Enantioselective Synthesis of Planar Chiral *ortho*-Functionalized Ferrocenyl Ketones

Dieter Enders,*[a] René Peters,[a] René Lochtman,[a] and Jan Runsink[a]

Keywords: Chirality / Orthometalation / Ketones / Asymmetric synthesis / Hydrazones / Ferrocene

An efficient and flexible asymmetric synthesis of planar chiral *ortho*-functionalized ferrocenyl ketones in good overall yields (35–79%) and enantiomeric excesses (ee = 71–96%) is described. The key step of the procedure is the diastereoselective (de = 87–98%) orthometalation of ferrocenyl ketone

SAMP hydrazones, followed by trapping with various electrophiles such as MeI, Me₃SiCl, Ph₂PCl, Ph₂CO, Me₂NCHO or I₂. Subsequent oxidative or reductive hydrazone cleavage leads to the title compounds.

Introduction

In recent years, planar chiral ferrocenes have been found to be extraordinarily efficient ligands for asymmetric catalysis in research and industry.[1] There has therefore been a renaissance of interest since the pioneering work of Ugi et al.^[2] in developing modern methods for the asymmetric synthesis of planar chiral ferrocenyl ligands, thus enabling an extension to the variety of accessible derivatives. The modern auxiliary-based methodologies complement one another by the way they are able to access planar chiral ferrocenes at differing oxidation states (Scheme 1): chiral acetal 1 gives rise to planar chiral aldehydes 2,[3] (S)-(2-methoxymethylpyrrolidin-1-yl)methylferrocene (3) yields planar chiral alcohols 4^[4] and oxazolines 5 are precursors for planar chiral carboxylic acid equivalent 6.[5] Additionally, the chiral sulfoxides 7 provide a highly flexible approach to a wide range of planar chiral derivatives 8, since the sulfoxide moiety may be substituted by different electrophiles.[6]

We report here the enantioselective synthesis of planar chiral ferrocenyl ketones **9** via diastereoselective orthometalation based on our SAMP/RAMP hydrazone method.^[7] Parts of this work were recently published as a preliminary communication.^[8]

Results and Discussion

As has been known for nearly half a century, the ferrocenyl ketones 11 are easily accessible by Friedel-Crafts acylation of ferrocene (10), demonstrating its strong aromatic character (Scheme 2).^[9]

Since the electron-donating character of the ferrocenyl residue reduces the electrophilicity of the ketones 11, they could not be transformed to the corresponding hydrazones

Scheme 1. Modern auxiliary based methodologies to planar chiral ferrocenes at differing oxidation states

using conventional methods such as stirring the ketone and hydrazine over molecular sieves or by azeotropic removal of the resulting water. In 1994, Bildstein et al. presented a method which allows the conversion of electron-rich ketones into their corresponding *N*,*N*-dimethylhydrazones by activating both the hydrazine and ketone with AlMe₃.^[10] It

Fe CHO CH_3 FE OCH_3 FE FE OCH_3 FE F

[[]a] Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule, Professor-Pirlet-Straße 1, 52074 Aachen, Germany Fax: (internat.) + 49-(0)241/888-8127 E-mail: enders@rwth-aachen.de

R = Ph, 2-thienyl, iPr, cHex

Scheme 2. Synthesis of ferrocenyl ketones 11 by Friedel-Crafts acylation

was found that this method is also applicable to the synthesis of SAMP hydrazones 12 (Scheme 3, Table 1).

R = Ph, 2-thienyl, iPr, cHex

Scheme 3. Synthesis of ferrocenyl ketone SAMP hydrazones 12

Table 1. Synthesis of ferrocenyl ketone SAMP hydrazones 12

12	R	Yield [%]	E/Z	
a	Ph	73	8.0:1	
b	<i>i</i> Pr	75	1:2.9	
c	<i>c</i> Hex	92	1:3.1	
d	2-thienyl	71	4.9:1	

SAMP [(S)-1-amino-2-methoxymethylpyrrolidine] and AlMe₃ were heated for several hours in refluxing toluene forming hydrazide complex 13 with evolution of methane. Two equivalents of 13 were required since the use of one equivalent resulted in the conversion of only 50%. This is a result of the formation of an N,N-ketal intermediate. When R is an aromatic residue (Ph, 2-thienyl), the (E)-hydrazones 12 are formed preferentially. Conversely, (Z)-12 is formed if R is an α -branched alkyl moiety. With the exception of 12d, the (E)- and (Z)-hydrazones are separated easily by flash chromatography.

(*E*)-Benzoylferrocene SAMP hydrazone (**12a**) is smoothly *ortho*-lithiated in diethyl ether at -70 °C using 1.1 equivalents of *n*BuLi (Scheme 4). The metalated species **14** can be trapped by a variety of electrophiles to give the resulting planar chiral hydrazones **15** in good yields (80–93%) and high diastereomeric excesses (de = 95-98%). The broad applicability of this method was demonstrated by an alkylation (EX = MeI), silylation (EX = Me₃SiCl), phosphinylation (EX = Ph₂PCl), hydroxyalkylation (EX = Ph₂CO), formylation (EX = Me₂NCHO) and iodination (EX = I₂) (Table 2).

Scheme 4. Diastereoselective *ortho*-functionalization of benzoylfer-rocene SAMP hydrazone **12a**

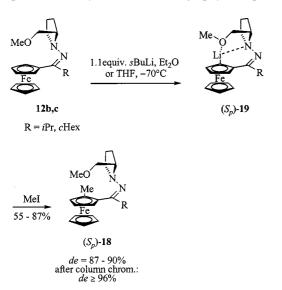
Table 2. Diastereoselective *ortho*-functionalization of ferrocenyl ketone SAMP hydrazones **12a**

15	E	Yield [%]	de [%]	Confg.
a b c d e f	Me SiMe ₃ PPh ₂ Ph ₂ P·BH ₃ Ph ₂ COH CHO	85 91 89 80 86 93 82	97 96 ≥96 ≥96 98 ≥96 95	(S, R_p) (S, S_p) (S, S_p) (S, S_p) (S, S_p)

Interestingly, the diastereoselectivity is strongly dependent on the chosen lithiation temperature. While metalation at room temperature led, after quenching with methyl iodide, to the (S,S_p) -configured product with a de of 47%, working at 0 °C decreased the de to 14%. Conversely, lithiation at -70 °C yielded the (S,R_p) -configured planar chiral hydrazone 15a with a de of 97%. By employing other electrophiles (Me₃SiCl, Ph₂CO, Ph₂PCl), similar de values were obtained when performing the lithiation step at different temperatures as the diastereoselectivity is determined mainly by this lithiation step.

The planar chiral derivatives 15 were obtained in a microcrystalline, amorphous or oily state, thus preventing us from determining the absolute configuration by X-ray-analysis. However, it was possible to determine the absolute configuration by NOE experiments. Compound 15e was found to be suitable for this purpose as the hydrogen bond between the hydroxyl proton and the imino nitrogen results in a rigid conformation. The intensive interactions between OH and NCH and between OH and NCH2 cis to NCH can only be explained by the absolute configuration shown in Figure 1. To the best of our knowledge, this is the first determination of the absolute configuration of a planar chiral compound by means of NOE measurements. Since the configuration of ortho-functionalized benzoylferrocene SAMP hydrazones 15 is fixed predominantly by the lithiation step, the configurations of all the other derivatives given are based on a uniform reaction pathway.

The phosphanylhydrazone **15c** turned out to be an efficient P,N-ligand in the standard Pd-catalyzed allylic alkylation of (\pm) -1,3-diphenyl-2-propenyl acetate **(16)** with di-


Figure 1. NOE connectivities for planar chiral *ortho*-hydroxyalkylated SAMP hydrazone **15e**

Ph See text
$$R = Ph$$
 $R = Ph$ $R = Ph$

Scheme 5. Pd-catalyzed allylic alkylation; reaction conditions: 1.0 mol-% [Pd(η^3 -C₃H₅)Cl]₂, 4.0 mol-% **15c**, 1.0 mol-% KOAc, 3.0 equiv. dimethylmalonate/BSA, CH₂Cl₂, room temp., 24 h

methylmalonate/N,O-bis(trimethylsilyl)acetamide (BSA, Scheme 5). [11] Employing 4.0 mol-% of ligand **15c** and 1.0 mol-% [Pd(η^3 -C₃H₅)Cl]₂ yields (R)-17 with an ee of 93% within 24 hours at room temperature in dichloromethane (yield 84%).

It was found that *n*BuLi was not basic enough to achieve the orthometalation of the (*Z*)-configured hydrazones **12b** and **12c**. However, by the use of 1.1 equiv. of *s*BuLi, the orthometalations proceed at -70 °C in diethyl ether or THF providing, after electrophilic trapping with methyl iodide, the planar chiral hydrazones **18** with *de* values of 87% (**18a**, R = *i*Pr) and 90% (**18b**, R = *c*Hex) (Scheme 6). After purification by flash chromatography the products

Scheme 6. Diastereoselective ortho-alkylation of (Z)-ferrocenyl SAMP hydrazones

1) 2.2 equiv.
$$nBuLi$$
,
THF, $-70^{\circ}C$
2) 2.7 equiv. MeI

12d, $E/Z = 4.9:1$

20, 74%, $de \ge 96\%$

Bu

21, 17%

Scheme 7. Unexpected butyl addition to the thiophene ring in 12d

were obtained diastereomerically pure [yield = 55% (18a) vs. 87% (18b)]. These results demonstrate that orthometalations proceeding via five-membered ring chelate systems, as in 14, occur more smoothly and more selectively than those proceeding via six-membered ring chelate systems as in 19. The determination of absolute configuration by NOE-experiments proved that (Z)-hydrazones are lithiated predominantly at the other *ortho*-position.

The standard metalation conditions for benzoylferrocene SAMP hydrazone 12a (1.1 equiv. nBuLi, Et_2O , -70 °C) could not be applied to the orthometalation of the thiophene derivative 12d, since the 3-position of the heterocycle is deprotonated preferentially, whereas in THF the 5-position is deprotonated. The addition of 2.2 equiv. of nBuLi in THF at -70 °C gave, instead of the expected formation of a dianion, an addition of the butyl residue to the 5-position of the heterocyclic system furnishing a mixture of 20 and 21 after electrophilic quenching with methyl iodide (Scheme 7). The oxidative rearomatization probably occurs during work up.

Cleavage of the auxiliary to regenerate the ketone functionality was generally accomplished by ozonolysis in dichloromethane at -78 °C (Scheme 8).

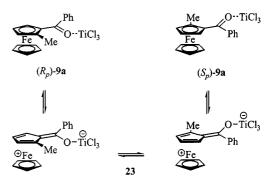
Scheme 8. Regeneration of the ketone moiety; reaction conditions: O₃, CH₂Cl₂, -78 °C or TiCl₃, DME, H₂O, ΔT or SnCl₂, DME, H₂O, ΔT or Cr(OAc)₂, THF, H₂O, ΔT or VCl₂, THF, H₂O, ΔT

However, in several cases the planar chiral hydrazones 15, 18 and 20 turned out to be rather sensitive towards oxidative reaction conditions. Furthermore, these compounds are not compatible with organic or mineral acids. Thus, we examined if the planar chiral hydrazones could be converted into the corresponding ketones 9 employing reducing Lewis acids. TiCl₃ is known for its ability to cleave the

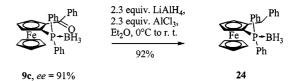
Scheme 9. SAMP hydrazone cleavage employing the reductive Lewis acid $TiCl_3$

N-O bonds of oxime ethers^[12] and the N-N bonds of 2,4-dinitrophenyl hydrazones^[13] and tosylhydrazones.^[14] In the case of ferrocenyl ketone SAMP hydrazones, we also assume that the N-N cleavage takes place yielding the ferrocenylketimine 22, which rapidly hydrolyzes to form the corresponding ketone 9 (Scheme 9). During the cleavage, Ti^{III} is oxidized to Ti^{IV}, which hydrolyzes forming a TiO₂ precipitate. Alternatively, SnCl₂, VCl₂ and Cr(OAc)₂ were found to be efficient reductive cleavage reagents.^[15]

All cleavage procedures mentioned here are accompanied by a low degree of racemization. However, the title *ortho*-functionalized ferrocenyl ketones **9** could be obtained, with one exception, in high enantiomeric purity (ee = 90-96%, Table 3).


Table 3. Cleavage of ferrocenyl ketone SAMP hydrazones 15, 18 and 20 to their corresponding ketones 9

9	E	R	Reagent	Yield [%]	ee [%]	Confg.
a b c d d e f g	Me Me SiMe ₃ Ph ₂ P·BH ₃ Ph ₂ COH CHO I Me Me	Ph Ph Ph Ph Ph Ph Ph Ph Cy 5-butyl-2-thienyl	TiCl ₃ O ₃ O ₃ O ₃ SnCl ₂ O ₃ O ₃ SnCl ₂ TiCl ₃ Cr(OAc) ₂	89 50 76 83 85 70 73 78 99 67	$\begin{array}{l} 90^{[a]} \\ 89^{[a]} \\ 92^{[b]} \\ 91^{[c]} \\ 96^{[c]} \\ 85^{[c]} \\ 90^{[d]} \\ 71^{[a]} \\ \geq 96^{[c]} \\ [e] \end{array}$	(R_p) (R_p) (S_p) (S_p) (R_p) (R_p) (R_p) (R_p) (R_p) (R_p) (R_p)


^[a] Determined by HPLC on a chiral stationary phase (Chiracel OD-2). - ^[b] Determined by HPLC on a chiral stationary phase [(*S*,*S*)-Whelk-O 1]. - ^[c] Determined by ¹H NMR spectroscopy using (–)-(*R*)-1-(9-anthryl)-2,2,2-trifluoroethanol as chiral cosolvent. - ^[d] Determined by ¹H NMR spectroscopy after quantitative reaction of the aldehyde with SAMP. - ^[e] Not determined yet.

As was demonstrated by Falk et al., the acid catalyzed racemization of ferrocenyl ketones such as **9a** proceeds intramolecularly. The Lewis acid (here TiCl₃) coordinates to the ketone forming the enolate structure **23** (Scheme 10). The substituted cyclopentadienyl ring is decomplexed from the iron atom leaving the ligand in a solvent cage, where it turns upside down. Recoordination by the iron from the opposite face now furnishes the enantiomer of the initial ferrocene **9a**.

More curious is the racemization in the case of ozonolysis. The following observation may, however, be of interest: ozonolysis of a sample of 15e with a de value of 2%

Scheme 10. Proposed racemization mechanism of planar chiral ferrocenyl ketones in the presence of Lewis acids like TiCl₃

Scheme 11. Reduction of ketone 9c to planar chiral monophosphanyl ligand 24

gave rise to the planar chiral ketone **9d** with an *ee* value of 57% as one diastereomer reacted at a much slower rate. In order to convert **15e** into **9d**, prolonged reaction times had to be applied.

In order to reduce the ketone moiety to the corresponding methylene group, ketone **9c** was treated with LiAlH₄/AlCl₃ (2.3 equiv.) in diethyl ether (Scheme 11) to give the BH₃-protected planar chiral monophosphane ligand **24** in high yield (92%). This example demonstrates that the planar chiral ferrocenyl ketones **9** should be interesting compounds as precursors profiting from the versatile ketone chemistry.

Conclusion

In conclusion, we have developed a flexible enantioselective synthesis of planar chiral ferrocenyl ketones by diaster-eoselective orthometalation employing SAMP as a highly efficient chiral auxiliary. The broad applicability of this methodology was demonstrated by alkylation, silylation, phosphinylation, hydroxyalkylation, formylation and iodination.

Experimental Section

General Remarks: All solvents were dried and distilled prior to use. – Column chromatography: Merck silica gel 60, 0.040–0.063 mm (230–400 mesh) (flash). – Optical rotation values: Perkin–Elmer P 241, solvent UVASOL-quality. – Melting points (uncorrected): Büchi 510. – IR: Perkin–Elmer FT 1750. – NMR: Varian VXR 300 and Gemini 300 (300 and 75 MHz for ¹H and ¹³C, respectively), Varian Inova 400 (400, 100 and 162 MHz for ¹H, ¹³C and ³¹P, respectively), Varian Unity 500 (500, 125 and 202 MHz for ¹H, ¹³C and ³¹P, respectively), C₆D₆ or CDCl₃ as solvent, TMS as internal standard. – MS: Finnigan MAT (70 eV). – Elemental analyses (C,H,N): elementar vario EL. – High Resolution MS: Finnigan MAT, MAT 95. – The diastereomeric excesses were deter-

mined by NMR-spectroscopy. The enantiomeric excesses were determined by HPLC employing chiral stationary phases or by NMR spectroscopy using the Pirkle alcohol as a chiral shift reagent.

General Procedure for the Preparation of Ferrocenyl Ketones 11 (GP1): To a suspension of AlCl₃ (1.06 equiv.) in dichloromethane (0.5 mL/mmol) was added 1.01 equiv. of an acid chloride. The mixture was stirred until the Al salt was almost completely dissolved. The resulting solution was added to a solution of ferrocene 10 (1.00 equiv.) in dichloromethane (0.75 mL/mmol). After stirring for the appropriate time (TLC control) at room temperature, the reaction mixture was poured onto crushed ice/aqueous saturated NaHCO₃. The aqueous phase was extracted three times with diethyl ether. The collected organic phase was washed with saturated aqueous NaHCO₃ and twice with saturated aqueous NaCl. After drying over MgSO₄ and concentrating in vacuo, the crude product was dissolved in a minimum of dichloromethane and purified by filtration through silica gel.

Cyclohexyl(ferrocenyl)methanone (11c): According to GP1, a solution of ferrocene 10 (10.00 g) in CH₂Cl₂ (40 mL) was treated with a solution of AlCl₃ (7.60 g, 1.06 equiv.) and cyclohexane carboxylic acid chloride (7.96 g, 1.01 equiv.) in CH₂Cl₂ (30 mL). After 48 h stirring at room temp. the reaction mixture was worked up and the product purified by filtration through silica gel (petroleum ether/ diethyl ether = 2:1). - Yield: 11.10 g (70%, orange crystals). - $R_f = 0.58$ (petroleum ether/diethyl ether = 2:1). - M.p. 76 °C. -IR (KBr): $\tilde{v} = 3117 \text{ cm}^{-1}$, 3093, 2922, 2852, 2242, 1659, 1451, 1413, 1381, 1341, 1311, 1296, 1262, 1223, 1179, 1142, 1106, 1089, 1078, 1044, 1026, 1003, 978, 894, 838, 806, 767, 738, 547, 509, 485, 468. $- {}^{1}H$ NMR (300 MHz, C_6D_6): $\delta = 1.06 - 1.93$ (m, 10 H, CH_2), 2.71 (tt, ${}^{3}J_{trans} = 11.5 \text{ Hz}$, ${}^{3}J_{cis} = 3.6 \text{ Hz}$, 1 H, COCH), 3.95 (s, 5 H, C_5H_5), 4.11 (t, $^{3/4}J = 1.9$ Hz, 2 H, $m-C_5H_4R$), 4.69 (t, $^{3/4}J =$ 1.9 Hz, 2 H, o-C₅H₄R). - ¹³C NMR (75 MHz, C₆D₆): $\delta = 26.26$ (CH₂), 26.30 (CH₂), 30.1 (CH₂), 47.9 (CHCO), 69.75 (C₅H₅), 69.79, 72.0 (C₅H₄R), 79.3 (*i*-C₅H₄R), 205.7 (C=O). – EI-MS: m/z =296.1 (100) [M⁺], 213.0 (42) [M⁺ - C_6H_{11}], 185.0 (29) [Fc⁺], 129.1 (25) $[C_{10}H_9^+]$, 120.9 (12) $[CpFe^+]$, 55.9 (9) $[Fe^+]$. - $C_{17}H_{20}FeO$ (296.2): calcd. C 68.94, H 6.81; found C 68.82, H 6.88.

Ferrocenyl(2-thienyl)methanone (11d): According to GP1, a solution of ferrocene 10 (10.00 g) in CH₂Cl₂ (40 mL) was treated with a solution of AlCl₃ (7.60 g, 1.06 equiv.) and 2-thienyl carboxylic acid chloride (7.87 g, 1.01 equiv.) in CH₂Cl₂ (30 mL). After 48 h stirring at room temp. the reaction mixture was worked up and the product purified by filtration through silica gel (petroleum ether/diethyl ether = 2:1). - Yield: 13.65 g (87%, red crystals). - R_f = 0.41 (hexane/diethyl ether = 4:1). – M.p. 122 °C. – IR (KBr): \tilde{v} = 3177 cm^{-1} , 3098, 3081, 2929, 2371, 2345, 2251, 1775, 1721, 1603, 1592, 1514, 1447, 1411, 1377, 1353, 1328, 1294, 1234, 1211, 1158, 1106, 1082, 1055, 1043, 1024, 1003, 924, 896, 875, 864, 857, 849, 830, 823, 799, 756, 745. - ¹H NMR (300 MHz, CDCl₃): $\delta = 4.22$ (s, 5 H, C_5H_5), 4.59 (m, 2 H, m- C_5H_4R), 5.02 (m, 2 H, o- C_5H_4R), 7.15 $(dd, {}^{3}J = 4.7 \text{ Hz}, {}^{3}J = 4.0 \text{ Hz}, 1 \text{ H}, C_{4}H_{3}S), 7.61 (d, {}^{3}J = 4.7, 1 \text{ H},$ C_4H_3S), 7.92 (d, $^3J = 3.4$ Hz, 1 H, C_4H_3S). - ^{13}C NMR (75 MHz, CDCl₃): $\delta = 70.4$ (C₅H₅), 71.0, 72.3 (C₅H₄R), 78.9 (*i*-C₅H₄R), 127.6, 131.5, 131.7 (C_4H_3S), 144.2 (*i*- C_4H_3S), 189.3 (C=O). – EI-MS: $m/z = 295.9 (100) [M^+], 267.8 (12) [M^+ - CO], 147.0 (12)$ $[C_5H_4C_4H_3S^+]$, 138.9 (21) [267.8 - FeC₅H₄S⁺], 120.8 (18) $[CpFe^+]$, 114.9 (12), 112.8 (12) [147.0 - H_2S], 110.9 (16) $[C_4H_3SCO^+]$, 57.1 (12) $[FeH^+]$, 56.1 (16) $[Fe^+]$. - $C_{15}H_{12}FeOS$ (296.2): calcd. C 60.83, H 4.08; found C 60.74, H 4.37.

General Procedure for the Preparation of Hydrazones 12 (GP2): A Schlenk flask fitted with a reflux condenser and a silicon oil bubbler was charged under argon with AlMe₃ (2.0 equiv., 2 M in toluene, 1-2 mL/mmol). SAMP 12 (2.0 equiv.) was then added slowly. After the evolution of methane subsided, the mixture was refluxed for 7 h. Ferrocenyl ketone 11 (1.0 equiv.) dissolved in toluene (1-2 mL/mmol) was added dropwise to the red-brown solution. The mixture was refluxed until completion (TLC control), cooled to 0 °C, poured onto crushed ice and washed with 5% aqueous NaHCO₃ and saturated aqueous NaCl, dried over MgSO₄ and concentrated in vacuo. The crude product was purified by flash chromatography enabling separation of the (E)- and (Z)-isomers of 12 in most cases.

SAMP Hydrazone 12a: According to GP2, a solution of ketone 11a (4.00 g) in toluene (70 mL) was added to a solution of hydrazide 13 (2.0 equiv.) in toluene (50 mL). After refluxing for 31 h, the reaction mixture was worked up. Flash chromatography (petroleum ether/diethyl ether = 4:1; 2% NEt₃) gave (E)-12a. - Yield: 4.06 g (73%, red-brown oil). $-R_f = 0.58$ (petroleum ether/diethyl ether = 2:1; 2% NEt₃). $- [\alpha]_D^{25} = +512.5$ (CHCl₃, c = 1.20). - IR (neat): $\tilde{v} = 3093 \text{ cm}^{-1}$, 3057, 3024, 2970, 2925, 2873, 2825, 2731, 1600, 1566, 1491, 1459, 1443, 1381, 1336, 1321, 1295, 1218, 1195, 1106, 1071, 1054, 1024, 1002, 971, 904, 876, 818, 774, 721, 700, 600, 577, 501, 483. - ¹H NMR (300 MHz, C₆D₆): $\delta = 1.30-1.90$ (m, 4 H, β-ring-CH₂), 2.36 (m, 1 H, NCH₂), 2.70 (m, 1 H, NCH₂), 3.28 (s, 3 H, OCH₃), 3.48 (dd, ${}^{2}J$ = 9.1 Hz, ${}^{3}J$ = 7.4 Hz, 1 H, OCH₂), 3.73 (m, 1 H, NCH), 3.84 (dd, ${}^{2}J = 8.7 \text{ Hz}$, ${}^{3}J = 4.0 \text{ Hz}$, 1 H, OCH₂), 4.08-4.14 (m, 2 H, C_5H_4R), 4.11 (s, 5 H, C_5H_5), 4.55 (m, 1 H, C_5H_4R), 4.68 (m, 1 H, C_5H_4R), 7.06–7.27 (m, 3 H, m- C_6H_5 , p- C_6H_5), 7.50 (dm, $^3J = 8.1 \text{ Hz}$, 2 H, $o-C_6H_5$). $- ^{13}C$ NMR (75 MHz, C_6D_6): $\delta = 23.3$ (NCH₂CH₂), 27.3 (NCHCH₂), 55.1 (NCH₂), 59.0 (OCH₃), 66.9, 68.0, 68.4, 69.1, 69.4 (C₅H₄R, NCH), 69.7 (C₅H₅), 76.5 (OCH₂), 86.4 (*i*-C₅H₄R), 127.7 (*p*-C₆H₅), 128.2, 129.1 (o/m-C₆H₅), 139.1 (i-C₆H₅), 150.9 (C=N). – EI-MS: m/z = $402.0 (51) [M^{+}], 356.9 (37) [M^{+} - CH_{2}OCH_{3}], 287.9 (100) [M^{+} - CH_{2}$ $C_6H_{12}NO$], 274.9 (61), 210.9 (13), 184.9 (92) [Fc⁺], 178.3 (23), 152.9 (10), 151.9 (12), 128.9 (71) [Fc⁺ - Fe], 120.9 (45) [CpFe⁺], 77 (12) $[C_6H_5^+]$, 56 (14) $[Fe^+]$. - $C_{23}H_{26}FeN_2O$ (402.3): calcd. C 68.66, H 6.51, N 6.96; found C 69.04, H 6.51, N 6.81.

SAMP Hydrazone 12b: According to GP2, a solution of ketone 11b (1.77 g) in toluene (50 mL) was added to a solution of hydrazide 13 (2.0 equiv.) in toluene (50 mL). After refluxing for 28 h, the reaction mixture was worked up. Flash chromatography (petroleum ether/diethyl ether = 4:1; 2% NEt₃) allowed a separation of (Z)-**12b** and (E)-**12b**. – Yield: 1.90 g (75%, red-brown oil). – Z/E =2.9:1. – $R_f = 0.48$ [(Z)-isomer; petroleum ether/ethyl acetate = 15:1; 2% NEt₃]; $R_f = 0.33$ [(E)-isomer; petroleum ether/ethyl acetate = 15:1; 2% NEt₃]. - $[\alpha]_D^{25}$ = -620.1 [(Z)-isomer, CHCl₃, c = 1.43]. – IR (CHCl₃): $\tilde{v} = 3096 \text{ cm}^{-1}$, 2962, 2922, 2871, 2825, 1714, 1660, 1599, 1449, 1381, 1361, 1334, 1280, 1247, 1218, 1197, 1107, $1066, 1031, 1002, 970, 906, 875, 820, 757, 667, 634, 497, 482. - {}^{1}H$ NMR [(Z)-isomer, 300 MHz, C_6D_6]: $\delta = 1.27$ [d, $^3J = 6.6$ Hz, 3 H, CH(C H_3)₂], 1.47 [d, ${}^3J = 6.6$ Hz, 3 H, CH(C H_3)₂], 1.50–1.80 (m, 4 H, β -ring-CH₂), 1.98 (m, 1 H, NCH₂), 2.24 (q, $^{2,3}J = 8.6$ Hz, 1 H, NCH₂), 2.95 [sept, ${}^{3}J = 6.6$ Hz, 1 H, CH(CH₃)₂], 3.25 (s, 3 H, OCH₃), 3.43 (dd, ${}^{2}J = 8.8 \text{ Hz}$, ${}^{3}J = 7.1 \text{ Hz}$, 1 H, OCH₂), 3.51 (m, 1 H, NCH), 3.69 (dd, ${}^{2}J = 8.8 \text{ Hz}$, ${}^{3}J = 3.8 \text{ Hz}$, 1 H, OCH₂), 4.04 (s, 5 H, C₅H₅), 4.09 (m, 1 H, m-C₅H₄R), 4.14 (m, 1 H, m- C_5H_4R), 4.41 (m, 1 H, o- C_5H_4R), 5.31 (m, 1 H, o- C_5H_4R). - ¹H NMR [(E)-isomer, 300 MHz, C_6D_6): $\delta = 1.20$ [d, $^3J = 7.1$ Hz, 3 H, CH(C H_3)₂], 1.24 [d, ${}^3J = 7.4$ Hz, 3 H, CH(C H_3)₂], 1.52–1.85 (m, 4 H, β -ring-CH₂), 2.04 (m, 1 H, NCH₂), 2.52 (q, $^{2,3}J = 8.5$ Hz, 1 H, NCH₂), 2.84 [sept, ${}^{3}J = 6.9$ Hz, 1 H, CH(CH₃)₂], 3.21 (s, 3 H, OCH₃), 3.33 (dd, ${}^{2}J = 8.8 \text{ Hz}$, ${}^{3}J = 7.1 \text{ Hz}$, 1 H, OCH₂), 3.49

(m, 1 H, NCH), 3.60 (dd, ${}^{2}J = 8.8 \text{ Hz}$, ${}^{3}J = 4.1 \text{ Hz}$, 1 H, OCH₂), 4.08 (s, 5 H, C_5H_5), 4.13 (m, 1 H, $m-C_5H_4R$), 4.66 (t, J = 1.7 Hz, 1 H, m-C₅H₄R), 4.71 (m, 1 H, o-C₅H₄R), 4.88 (m, 1 H, o-C₅H₄R). ¹³C NMR [(Z)-isomer, 75 MHz, C_6D_6]: $\delta = 21.0$, 24.8 $[CH(CH_3)_2]$, 22.5 (NCH₂CH₂), 27.3 (NCHCH₂), 34.9 [CH(CH₃)₂], 53.6 (NCH₂), 59.0 (OCH₃), 67.2, 69.3, 69.8, 70.6, 72.0 (C₅H₄R, NCH), 69.6 (C_5H_5), 76.5 (OCH₂), 78.9 (*i*- C_5H_4R), 164.7 (C=N). - 13 C NMR [(E)-isomer, 75 MHz, C₆D₆]: $\delta = 19.7$, 21.1 [CH(CH₃)₂], 22.4 (NCH₂CH₂), 27.5 (NCHCH₂), 37.4 [CH(CH₃)₂], 55.9 (NCH₂), 58.9 (OCH₃), 66.9, 68.6, 69.19, 69.22, 72.0 (C₅H₄R, NCH), 69.9 (C_5H_5), 76.5 (OCH₂), 81.2 (*i*- C_5H_4R), 171.9 (C=N). - EI-MS: $m/z = 368.0 (70) [M^+], 323.0 (49) [M^+ - CH₂OCH₃],$ $303.0 (16) [M^+ - C_5H_5], 257.9 (14), 253.9 (100) [M^+ - C_6H_{12}NO],$ 211.0 (26) [FcCN⁺], 188.9 (11), 185.0 (52) [Fc⁺], 161.5 (10), 129.0 (16) $[Fc^+ - Fe]$, 56.0 (12) $[Fe^+]$. $- C_{20}H_{28}FeN_2O$ (368.3): calcd. C 65.22, H 7.66, N 7.61; found C 65.51, H 7.73, N 7.57.

SAMP Hydrazone 12c: According to GP2, a solution of ketone 11c (2.04 g) in toluene (30 mL) was added to a solution of hydrazide 13 (2.0 equiv.) in toluene (30 mL). After refluxing for 10 h, the reaction mixture was worked up. Flash chromatography (petroleum ether/diethyl ether = 4:1; 2% NEt₃) allowed a separation of (Z)-**12c** and (*E*)-**12c**. — Yield: 2.60 g (92%, orange powder). — Z/E =3.1:1. - $R_f = 0.55$ [(Z)-isomer; hexane/diethyl ether = 4:1; 2% NEt₃]; $R_f = 0.49$ [(E)-isomer; hexane/diethyl ether = 4:1; 2% NEt₃]. $- [\alpha]_D^{25} = -464.5 [(Z)-isomer, CHCl_3, c = 1.13]; [\alpha]_D^{25} = +333.6$ [(E)-isomer, CHCl₃, c = 0.97]. – M.p. 72 °C [(Z)-isomer]; M.p. 68 °C [(E)-isomer]. – IR (KBr): $\tilde{v} = 3138 \text{ cm}^{-1}$, 3098, 2970, 2956, 2922, 2878, 2852, 2812, 2722, 1655, 1591, 1476, 1451, 1412, 1382, 1345, 1331, 1305, 1276, 1254, 1226, 1199, 1182, 1156, 1127, 1107, 1094, 1061, 1045, 1035, 1023, 1002, 974, 915, 891, 817, 754, 724, 627, 522, 499, 482. – ¹H NMR [(Z)-isomer, 300 MHz, C_6D_6]: $\delta =$ 1.26-2.20 (m, 14 H, (CH₂)₅ and β-ring-CH₂), 2.26 (q, $^{2,3}J =$ 8.4 Hz, 1 H, NCH₂), 2.67 (tt, ${}^{3}J = 11.1$ Hz, ${}^{3}J = 3.4$ Hz, 1 H, N= CCH), 3.24 (m, 1 H, NCH₂), 3.26 (s, 3 H, OCH₃), 3.43 (dd, ${}^{2}J =$ 8.7 Hz, ${}^{3}J = 7.1$ Hz, 1 H, OCH₂), 3.53 (qd, ${}^{3}J = 7.7$ Hz, ${}^{3}J =$ 4.0 Hz, 1 H, NCH), 3.70 (dd, ${}^{2}J = 8.7$ Hz, ${}^{3}J = 1.7$ Hz, 1 H, OCH₂), 4.06 (s, 5 H, C₅H₅), 4.10 (td, ${}^{3}J = 2.4$ Hz, ${}^{4}J = 1.4$ Hz, 1 H, m-C₅H₄R), 4.15 (td, ${}^{3}J = 2.4$ Hz, ${}^{4}J = 1.4$ Hz, 1 H, m-C₅H₄R), 4.45 (dt, ${}^{3}J = 2.4 \text{ Hz}$, ${}^{4}J = 1.3 \text{ Hz}$, 1 H, $o\text{-C}_{5}\text{H}_{4}\text{R}$), 5.29 (dt, ${}^{3}J =$ 2.4 Hz, ${}^{4}J = 1.4$ Hz, o-C₅H₄R). $-{}^{1}H$ NMR [(*E*)-isomer, 300 MHz, C_6D_6]: $\delta = 1.10-1.38$ (m, 3 H), 1.60-1.95 [m, 11 H, (CH₂)₅ and β-ring-CH₂], 2.06 (m, 1 H, NCH₂), 2.55 (q, $^{2,3}J = 8.7$ Hz, 1 H, NCH₂), 3.05 (tdd, ${}^{3}J = 9.1$ Hz, ${}^{3}J = 7.7$ Hz, ${}^{3}J = 3.7$ Hz, 1 H, N= CCH), 3.23 (s, 3 H, OCH₃), 3.41 (dd, ${}^{2}J = 8.7 \text{ Hz}$, ${}^{3}J = 7.4 \text{ Hz}$, 1 H, OCH₂), 3.53 (qd, ${}^{3}J = 7.4 \text{ Hz}$, ${}^{3}J = 4.0 \text{ Hz}$, 1 H, NCH), 3.65 $(dd, {}^{2}J = 8.7 \text{ Hz}, {}^{3}J = 4.0 \text{ Hz}, 1 \text{ H, OCH}_{2}), 4.10 \text{ (s, 5 H, C}_{5}\text{H}_{5}),$ 4.14 (m, 2 H, m-C₅H₄R), 4.80 (dt, ${}^{3}J = 2.7$, ${}^{4}J = 1.3$, 1 H, o- C_5H_4R), 4.96 (dt, $^3J = 2.4$ Hz, $^4J = 1.3$ Hz, 1 H, o- C_5H_4R). - ^{13}C NMR [(Z)-isomer, 300 MHz, C_6D_6]: $\delta = 22.5$ (NCH₂CH₂), 26.8, 27.2, 27.3, 27.4, 30.7, 30.9 31.3, 35.7 (CH₂), 45.9 (N=CCH), 53.8 (NCH₂), 59.0 (OCH₃), 67.3, 69.2, 69.7, 70.5, 71.9 (C₅H₄R, NCH), 69.5 (C_5H_5), 76.5 (OCH_2), 79.1 ($i-C_5H_4R$), 164.0 (C=N). - ¹³CNMR [(E)-isomer, 300 MHz, C_6D_6]: $\delta = 22.5$ (NCH₂CH₂), 26.6, 27.0, 27.3, 27.6, 30.7, 30.9 (CH₂), 40.7 (N=CCH), 56.2 (NCH₂), 59.0 (OCH₃), 67.1, 69.0, 69.18, 69.22, 69.5 (C₅H₄R, NCH), 69.9 (C_5H_5) , 76.5 (OCH₂), 82.1 (*i*-C₅H₄R), 170.6 (C=N). – EI-MS: m/ $z = 408.1 (43) [M^+], 363.0 (26) [M^+ - CH_2OCH_3], 242.0 (13) [M^+]$ $- C_5H_5$], 312.0 (11), 294.0 (100) [M⁺ $- C_6H_{12}NO$], 212.0 (17) $[294.0 - C_6H_{12}]$, 210.9 (27) $[FcCN^+]$, 184.8 (33) $[Fc^+]$, 128.8 (18), 120.9 (31) [CpFe⁺], 55.1 (15). - C₂₃H₃₂FeN₂O (408.4): C 67.65, H 7.90, N 6.86; found C 67.91, H 7.88, N 6.45.

SAMP Hydrazone 12d: According to GP2, a solution of ketone **11d** (2.04 g) in toluene (40 mL) was added to a solution of hydrazide **13**

(2.0 equiv.) in toluene (30 mL). After heating to reflux for 9 h, the reaction mixture was worked up. Flash chromatography (petroleum ether/diethyl ether = 4:1; 2% NEt₃) provided a mixture of (E)-12d and (Z)-12d. – Yield: 1.96 g (71%, red-brown oil). – E/Z = 4.9:1. $-R_f = 0.50$ (hexane/diethyl ether = 4:1; 2% NEt₃). $- [\alpha]_D^{25} =$ +458.9 (CHCl₃, c = 1.31). – IR (neat): $\tilde{v} = 3094$ cm⁻¹, 2970, 2924, 2873, 2727, 2732, 1640, 1553, 1459, 1425, 1383, 1352, 1336, 1282, 1228, 1195, 1159, 1107, 1055, 1024, 1002, 969, 903, 875, 820, 706, 576, 559, 499. – ¹H NMR [(*E*)-isomer, 300 MHz, C_6D_6]: $\delta =$ 1.36–1.98 (m, 4 H, β-ring-CH₂), 2.50 (ddd, ${}^{2}J = 9.7$ Hz, ${}^{3}J =$ 8.4 Hz, ${}^{3}J = 6.7$ Hz, 1 H, NCH₂), 3.02 (ddd, ${}^{2}J = 9.7$ Hz, ${}^{3}J =$ 7.7 Hz, $^{3}J = 5.4 \text{ Hz}$, 1 H, NCH₂), 3.23 (s, 3 H, OCH₃), 3.46 (dd, $^{2}J = 9.7 \text{ Hz}, ^{3}J = 8.4 \text{ Hz}, 1 \text{ H, OCH}_{2}, 3.75 \text{ (m, 2 H, OCH}_{2} \text{ and }$ NCH), 4.13 (m, 2 H, m-C₅H₄R), 4.15 (s, 5 H, C₅H₅), 4.60 (dt, ${}^{3}J$ = 2.4 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, o-C₅H₄R), 4.84 (dt, ${}^{3}J$ = 2.4 Hz, ${}^{4}J$ = 1.4 Hz, 1 H, o-C₅H₄R), 6.80 (dd, ${}^{3}J = 5.0$ Hz, ${}^{3}J = 3.7$ Hz, 1 H, C_4H_3S), 7.06 (dd, $^3J = 5.0 \text{ Hz}$, $^4J = 1.3 \text{ Hz}$, 1 H, C_4H_3S), 7.37 (dd, $^{3}J = 3.7 \text{ Hz}, ^{4}J = 1.4 \text{ Hz}, 1 \text{ H}, C_{4}H_{3}S). - ^{13}C \text{ NMR } [(E)\text{-isomer},$ 75 MHz, C_6D_6): $\delta = 23.2$ (NCH₂CH₂), 27.5 (NCHCH₂), 54.4 (NCH₂), 59.0 (OCH₃), 66.8, 67.8, 69.2, 69.4, 69.6 (C₅H₄R, NCH), 69.9 (C₅H₅), 76.4 (OCH₂), 86.1 (*i*-C₅H₄R), 125.3, 127.5, 129.6 (C_4H_3S) , 138.8 (*i*- C_4H_3S), 147.3 (C=N). – EI-MS: m/z = 408.0(92) $[M^+]$, 363.0 (26) $[M^+ - CH_2OCH_3]$ or $[M^+ - CH=S]$, 293.9 (100) $[M^+ - C_6H_{12}NO]$, 184.9 (68) $[Fc^+]$, 181.4 (13), 128.8 (50), 120.8 (21) [CpFe⁺], 55.8 (13) [Fe⁺]. $- C_{21}H_{24}FeN_2OS$ (408.3): calcd. C 61.77, H 5.92, N 6.86; found C 61.87, H 6.06, N 7.17.

General Procedure for the *ortho*-Functionalization of Benzoylferrocene SAMP Hydrazone 12a (GP3): Hydrazone 12a was dissolved in diethyl ether (10 mL/mmol) under argon and cooled down to -70 °C. A solution of *n*BuLi (1.1 equiv., 1.6 M in hexane) was added dropwise and the reaction mixture was stirred for 9 h at -70 °C. Then the electrophile (1.2 equiv.) was added. After warming to room temp. overnight, the solution was cooled to 0 °C and quenched with saturated aqueous NH₄Cl, washed with saturated aqueous NaCl and dried over MgSO₄. After concentrating in vacuo, the crude product was purified by flash chromatography.

Planar Chiral SAMP Hydrazone (S,R_n) -15a: According to GP3, a solution of (E)-12a (519 mg) in Et₂O (15 mL) was treated with a solution of *n*BuLi (1.1 equiv.) in hexane. After 9 h stirring at -70°C, methyl iodide (122 µL) was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 10:1; 2% NEt₃) provided the orthomethylated planar chiral hydrazone 17a. -Yield: 457 mg (85%, red-brown oil). $-R_f = 0.66$ (petroleum ether/ diethyl ether = 2:1; 2% NEt₃). – de = 97%. – $[\alpha]_D^{25} = +59.0$ $(CHCl_3, c = 1.20)$. – IR $(CHCl_3)$: $\tilde{v} = 3387 \text{ cm}^{-1}$, 3092, 3057, 2972, 2946, 2922, 2874, 2827, 2731, 1642, 1598, 1578, 1460, 1444, 1428, 1377, 1348, 1322, 1277, 1227, 1198, 1106, 1072, 1036, 1028, 1002, 970, 941, 928, 903, 878, 850, 817, 773, 757, 724, 699, 667, 594, 508, 489. - ¹H NMR (major isomer, 500 MHz, C_6D_6): $\delta =$ 1.41 (m, 2 H, NCH₂CH₂), 1.58 (m, 1 H, NCHCH₂ trans to NCH), 1.88 (m, 1 H, NCHCH₂ cis to NCH), 2.29 (s, 3 H, CH₃), 2.44 (dt, $^{2}J = 9.8 \text{ Hz}, ^{3}J = 7.4 \text{ Hz}, 1 \text{ H}, \text{ NCH}_{2} \text{ cis} \text{ to NCH}, 2.75 (dt, ^{2}J = ^{2}\text{ Hz})$ 9.6 Hz, ${}^{3}J = 7.0$ Hz, 1 H, NCH₂ trans to NCH), 3.25 (s, 3 H, OCH_3), 3.45 (dd, ${}^2J = 9.0 \text{ Hz}$, ${}^3J = 7.8 \text{ Hz}$, 1 H, OCH_2), 3.69 (m, 1 H, NCH), 3.82 (dd, ${}^{2}J = 9.0$ Hz, ${}^{3}J = 3.9$ Hz, 1 H, OCH₂), 3.93 (t, ${}^{3}J = 2.5 \text{ Hz}$, 1 H, C₅H₃R₂), 4.02 (dd, ${}^{3}J = 2.6 \text{ Hz}$, ${}^{4}J = 1.5 \text{ Hz}$, 1 H, $C_5H_3R_2$), 4.09 (s, 5 H, C_5H_5), 4.11 (m, 1 H, $C_5H_3R_2$), 7.08 (tt, ${}^{3}J = 7.4 \text{ Hz}$, ${}^{4}J = 1.3 \text{ Hz}$, 1 H, $p\text{-C}_{6}\text{H}_{5}$), 7.17 (tm, ${}^{3}J = 7.6 \text{ Hz}$, 2 H, m-C₆H₅), 7.51 (ddm, ${}^{3}J = 8.3$ Hz, ${}^{4}J = 1.4$ Hz, 2 H, o-C₆H₅). $^{-1}$ H NMR (minor isomer, 500 MHz, C₆D₆): δ = 1.37 (m, 2 H, NCH₂CH₂), 1.55 (m, 1 H, NCHCH₂ trans to NCH), 1.83 (m, 1 H,

NCHCH₂ cis to NCH), 2.29 (m, 1 H, NCH₂ cis to NCH), 2.50 (s, 3 H, CH₃), 2.65 (m, 1 H, NCH₂ trans to NCH), 3.32 (s, 3 H, OCH_3), 3.55 (dd, ${}^2J = 9.1 \text{ Hz}$, ${}^3J = 7.4 \text{ Hz}$, 1 H, OCH_2), 3.64 (m, 1 H, NCH), 3.86 (dd, ${}^{2}J$ = 9.1 Hz, ${}^{3}J$ = 3.7 Hz, 1 H, OCH₂), 3.92 (t, ${}^{3}J = 2.7 \text{ Hz}$, 1 H, C₅H₃R₂), 3.98 (dd, ${}^{3}J = 2.7 \text{ Hz}$, ${}^{4}J = 1.7 \text{ Hz}$, 1 H, $C_5H_3R_2$), 4.06 (s, 5 H, C_5H_5), 4.16 (dd, $^3J = 3.0 \text{ Hz}$, $^4J =$ 1.9 Hz, 1 H, $C_5H_3R_2$), 7.06 (tt, $^3J = 7.4$ Hz, $^4J = 1.5$ Hz, 1 H, p- C_6H_5), 7.16 (m, 2 H, m- C_6H_5), 7.39 (dd, $^3J = 8.4$ Hz, $^4J = 1.4$ Hz, 2 H, o-C₆H₅). - ¹³C NMR (major isomer, 125 MHz, C₆D₆): δ = 17.2 (CH₃), 23.2 (NCH₂CH₂), 27.4 (NCHCH₂), 55.1 (NCH₂), 59.1 (OCH_3) , 66.5 $(C_5H_3R_2)$, 67.1 (NCH), 70.5 (C_5H_5) , 71.0 $(C_5H_3R_2)$, 72.5 (C_5H_3R), 76.4 (OCH₂), 83.4, 84.5 (i- $C_5H_3R_2$), 127.7 (p- C_6H_5), 128.2, 129.2 (o/m-C₆H₅), 139.7 (i-C₆H₅), 152.9 (C=N). - ¹³C NMR (minor isomer, 125 MHz, C_6D_6): $\delta = 16.6$ (CH₃), 23.2 (NCH₂CH₂), 27.2 (NCHCH₂), 55.0 (NCH₂), 59.2 (OCH₃), 66.5 $(C_5H_3R_2)$, 67.2 (NCH), 70.3 $(C_5H_3R_2)$, 70.4 (C_5H_5) , 72.5 $(C_5H_3R_2)$, 76.6 (OCH₂), 84.00, 84.04 (*i*-C₅H₃R₂), 127.6 (*p*-C₆H₅), 128.1, 129.3 (o/m-C₆H₅), 139.8 (i-C₆H₅), 153.1 (C=N). – EI-MS: m/z = 416.0 (6) [M⁺], 302.0 (12) [M⁺ - C₆H₁₂NO], 198.9 (22) $[CH_3C_{10}H_8Fe^+]$, 143.0 (49) [198.9 - Fe], 141.0 (18), 133.9 (11) $[CH_3C_5H_3Fe^+]$, 128.0 (17), 125.0 (17), 123.0 (11), 120.9 (73) [CpFe⁺], 119.0 (10), 113.1 (13), 111.1 (26), 109.0 (16), 105.0 (11), 99.0 (17), 97.0 (36), 96.0 (15), 95.0 (24), 85.0 (35), 83.0 (34), 81.0 (25), 79.0 (10), 77.0 (25) $[C_6H_5^+]$, 71.1 (53), 69.0 (42), 67.0 (18), 57.1 (32), 55.9 (100) [Fe $^+$]. – $C_{24}H_{28}FeN_2O$ (416.3): calcd. C 69.24, H 6.78, N 6.73; found C 69.64, H 6.95, N 6.79.

Planar Chiral SAMP Hydrazone (S,S_n) -15b: According to GP3, a solution of (E)-12a (515 mg) in Et₂O (15 mL) was treated with a solution of nBuLi (1.1 equiv.) in hexane. After 9 h stirring at -70°C, trimethylsilyl chloride (256 µL) was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 4:1; 2% NEt₃) provided planar chiral ortho-silylated hydrazone 15b. -Yield: 551 mg (91%, red-brown oil). $-R_f = 0.83$ (petroleum ether/ diethyl ether = 2:1; 2% NEt₃). – de = 96%. – $[\alpha]_D^{25} = -26.3$ $(CHCl_3, c = 1.14)$. – IR $(CHCl_3)$: $\tilde{v} = 3091 \text{ cm}^{-1}$, 3056, 2952, 2891, 2873, 2825, 1563, 1490, 1459, 1446, 1415, 1385, 1343, 1320, 1299, 1278, 1241, 1199, 1150, 1107, 1081, 1018, 1002, 969, 923, 901, 859, 835, 818, 775, 757, 722, 697, 668, 630, 578, 510, 454. - ¹H NMR (300 MHz, C_6D_6): $\delta = 0.54$ (s, 9 H, $Si(CH_3)_3$), 1.38-1.64 (m, 3 H, β-ring-CH₂), 1.89 (m, 1 H, NCHCH₂), 2.56 (m, 1 H, NCH_2), 2.76 (m, 1 H, NCH_2), 3.20 (s, 3 H, OCH_3), 3.65 (dd, $^2J =$ 9.1 Hz, ${}^{3}J = 4.0$ Hz, 1 H, OCH₂), 3.72 (dd, ${}^{2}J = 9.4$ Hz, ${}^{3}J =$ 7.7 Hz, 1 H, OCH₂), 3.89 (dd, ${}^{3}J = 2.7$ Hz, ${}^{4}J = 1.7$ Hz, 1 H, $R_2C_5H_3$), 3.91 (m, 1 H, NCH), 4.12 (s, 5 H, C_5H_5), 4.16 (t, 3J = 2.7 Hz, 1 H, $R_2C_5H_3$), 4.25 (dd, $^3J = 2.7$ Hz, $^4J = 1.7$ Hz, 1 H, $R_2C_5H_3$), 7.08–7.25 (m, 3 H, m/p- C_6H_5), 7.56 (dm, 3J = 7.1 Hz, 2 H, o-C₆H₅). - ¹³C NMR (75 MHz, C₆D₆): $\delta = 1.89$ [Si(CH₃)₃], 23.8 (NCH₂CH₂), 27.8 (NCHCH₂), 56.2 (NCH₂), 59.0 (OCH₃), 65.9 (NCH), 71.1, 73.3, 76.6 (R₂C₅H₃), 69.1 (*i*-R₂C₅H₃), 69.7 (C_5H_5) , 76.6 (OCH_2) , 92.5 $(i-R_2C_5H_3)$, 127.7, 129.3 (C_6H_5) , 139.7 $(i-C_6H_5)$, 152.6 (C=N). – EI-MS: m/z = 474.2 (100) [M⁺], 364.1 (10), 360.1 (61) $[M^+ - C_6H_{12}NO]$, 257.2 (31) $[M^+ - PhC =$ N-SMP], 214.7 (11), 121 (9) [CpFe⁺]. - HR-MS: C₂₆H₃₄⁵⁶FeN₂OSi: calcd. 474.17898; found 474.17861.

Planar Chiral SAMP Hydrazone (S_1S_p)-15c: According to GP3, a solution of (E)-12a (855 mg) in Et₂O (20 mL) was treated with a solution of nBuLi (1.1 equiv.) in hexane. After 9 h stirring at -70 °C, chlorodiphenylphosphane (0.5 mL) was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 7:1; 2% NEt₃) provided planar chiral *ortho*-phosphinylated hydrazone 15c.

- Yield: 1.11 g (89%, orange powder). - $R_f = 0.69$ (petroleum ether/diethyl ether = 2:1; 2% NEt₃). $-de \ge 96\%$. $-[\alpha]_D^{25} = -365.1$ $(CHCl_3, c = 0.56)$. – M.p. 55 °C. – IR (KBr): $\tilde{v} = 3050 \text{ cm}^{-1}$, 2966, 2923, 2870, 2850, 2823, 2245, 1950, 1886, 1809, 1654, 1573, 1475, 1447, 1433, 1383, 1341, 1323, 1302, 1279, 1254, 1198, 1159, 1107, 1070, 1001, 971, 893, 816, 773, 743, 722, 697, 630, 581, 527, 489, 456. – ¹H NMR (500 MHz, C_6D_6): $\delta = 1.35$ (pent, ³J =7.0 Hz, 2 H, NCH₂C H_2), 1.59 (m, 1 H, NCHC H_2), 1.72 (m, 1 H, $NCHCH_2$), 2.60 (dt, ${}^2J = 10.1 Hz$, ${}^3J = 7.3 Hz$, 1 H, NCH_2), 2.64 $(dd, {}^{2}J = 9.2 \text{ Hz}, {}^{3}J = 7.3 \text{ Hz}, 1 \text{ H, OCH}_{2}), 2.74 (dd, {}^{2}J = 9.2 \text{ Hz},$ $^{3}J = 3.7 \text{ Hz}, 1 \text{ H, OCH}_{2}, 2.81 \text{ (dt, } ^{2}J = 9.8 \text{ Hz, } ^{3}J = 6.7 \text{ Hz, } 1 \text{ H,}$ NCH₂), 3.03 (s, 3 H, OCH₃), 3.79 (m, 1 H, NCH), 3.80 (m, 1 H, $R_2C_5H_3$), 3.98 (td, J = 3.1 Hz, J = 0.6 Hz, 1 H, $R_2C_5H_3$), 4.14 (m, 1 H, $R_2C_5H_3$), 4.16 (s, 5 H, C_5H_5), 7.06 (tm, $^3J = 7.0$ Hz, 1 H, C_6H_5), 7.12 (m, 6 H, C_6H_5), 7.21 (t, J = 7.1 Hz, 2 H, C_6H_5), 7.45 (tt, J = 7.0 Hz, J = 1.5 Hz, 2 H, C₆H₅), 7.68 (m, 2 H, C₆H₅), 7.74 (dm, J = 7.0 Hz, 2 H, C₆H₅). $- {}^{13}\text{C NMR}$ (125 MHz, C₆D₆): $\delta =$ 23.7 (NCH₂CH₂), 26.8 (NCHCH₂), 56.3 (NCH), 58.6 (OCH₃), 66.2 (NCH), 69.6, 71.9 ($R_2C_5H_3$), 73.9 (d, $J_{CP} = 5.5 \text{ Hz}$, $R_2C_5H_3$), 71.0 (d, $J_{CP} = 1.1 \text{ Hz}$, C_5H_5), 75.1 (OCH₂), 75.3 (d, $^2J_{CP} = 14.3 \text{ Hz}$, $R_2C_5H_3$), 91.4 (d, ${}^1J_{CP} = 12.1 \text{ Hz}$, $R_2C_5H_3$), 127.1, 128.15, 128.8 $(p-C_6H_5)$, 128.13 (d, ${}^3J_{CP} = 6.6$ Hz, P-m-C₆H₅), 128.3, 129.3 (N= C-o/m- C_6H_5), 132.6 (d, ${}^2J_{CP} = 18.1 \text{ Hz}$), 136.3 (d, ${}^2J_{CP} = 21.9 \text{ Hz}$, P-o-C₆H₅), 138.9 (N=C-*i*-C₆H₅), 141.7 (d, ${}^{1}J_{CP} = 18.1 \text{ Hz}$), 143.6 (d, ${}^{1}J_{CP} = 11.5 \text{ Hz}$, $P-i-C_{6}H_{5}$), 147.0 (C=N). $- {}^{31}P$ NMR (202 MHz, C_6D_6): $\delta = -17.76$ (s). - EI-MS: m/z = 586.3 (0.1) $[M^+]$, 472.0 (100) $[M^+ - C_6H_{12}NO]$, 406.0 (2), 236.0 (3), 170.0 (1), 121.0 (2) [CpFe⁺]. - C₃₅H₃₅FeN₂OP (586.5): calcd. C 71.68, H 6.02, N 4.78; found C 71.36, H 6.50, N 4.67.

Planar Chiral SAMP Hydrazone (S_1, S_p)-15d: To a solution of hydrazone 15c (200 mg) in THF (2 mL) was added a solution of BH₃·THF (1.2 equiv. 1 M in THF) at 0 °C. The reaction mixture was stirred for 3.5 h at this temp., it was then quenched with saturated aqueous NH₄Cl and washed with saturated aqueous NaCl. After drying over MgSO₄, borane protected phosphane 15d was obtained by filtration though silica gel (CH₂Cl₂). - Yield: 180 mg (88%, orange crystals). – $R_f = 0.69$ (hexane/diethyl ether = 2:1). $-de \ge 96\%$. $-[\alpha]_D^{25} = -68.4$ (CHCl₃, c = 0.79). - M.p. 84 °C. - IR (KBr): $\tilde{v} = 3077 \text{ cm}^{-1}$, 3053, 2964, 2961, 2869, 2823, 2387, 2346, 2265, 1959, 1891, 1810, 1705, 1639, 1549, 1482, 1436, 1384, 1341, 1324, 1282, 1250, 1217, 1196, 1159, 1106, 1060, 1021, 1003, 971, 923, 897, 822, 773, 741, 696, 635, 612, 574, 525, 498, 480. -¹H NMR (300 MHz, C_6D_6): $\delta = 1.41$ (m, 1 H, NCH_2CH_2), 1.55 (m, 1 H, NCH₂CH₂), 1.68 (m, 1 H, NCHCH₂), 1.90 (m, 1 H, NCHCH₂), 2.56 (m, 2 H, NCH₂), 2.80 (m, 1 H, OCH₂), 2.90 (m, 1 H, OCH₂), 3.03 (s, 3 H, OCH₃), 3.66 (td, ${}^{3}J = 2.5 \text{ Hz}$, ${}^{4}J =$ 1.4 Hz, 1 H, $C_5H_3R_2$), 3.83 (m, 1 H, NCH), 3.99 (t, $^3J = 2.5$ Hz, 1 H, $C_5H_3R_2$), 4.38 (s, 5 H, C_5H_5), 4.02 (m, 1 H, $C_5H_3R_2$), 7.02–7.22 (m, 9 H, C_6H_5), 7.65–7.77 (m, 4 H) and 7.88 (tm, 2 H, $^3J=8.0$ Hz, $o\text{-}C_6H_5$). ^{-13}C NMR (75 MHz, C_6D_6): $\delta=24.3$ (NCH₂CH₂), 27.0 (NCHCH₂), 57.4 (NCH₂), 58.6 (OCH₃), 64.9 (NCH), 67.2 (d, $J_{CP} = 75.9 \text{ Hz}$, $i\text{-}C_5H_3R_2$), 70.2 (d, $J_{CP} = 6.9 \text{ Hz}$), 72.1 (d, $J_{CP} = 7.8 \text{ Hz}$), 75.5 (d, $J_{CP} = 4.0 \text{ Hz}$, $C_5H_3R_2$), 71.4 (C_5H_5) , 75.3 (OCH₂), 93.6 (d, ${}^2J_{CP} = 9.2 \text{ Hz}$, $i\text{-}C_5H_3R_2$), 128.1 $(N=C-p-C_6H_5)$, 128.3, 129.6 $(N=C-o/m-C_6H_5)$, 129.6, 130.3 (d, ${}^{4}J_{CP} = 1.7 \text{ Hz}, \text{ P-}p\text{-}C_{6}H_{5}), 132.7 \text{ (d, } {}^{2}J_{CP} = 9.2 \text{ Hz)}, 134.7 \text{ (d, }$ $^{2}J_{CP} = 8.0 \text{ Hz}, \text{ P-}o\text{-}C_{6}\text{H}_{5}$), 134.0 (d, $^{1}J_{CP} = 52.7 \text{ Hz}$), 135.4 (d, ${}^{1}J_{CP} = 59.6 \text{ Hz}, P-i-C_{6}H_{5}, 139.1 \text{ (N=C-}i-C_{6}H_{5}), 142.1 \text{ (C=N)}.$ EI-MS: m/z = 600.2 (1) [M⁺], 486.1 (33) [M⁺ - C₆H₁₂NO], 472.1 (100) [486.1 - BH₃], 406.0 (8) [472.1 - C₅H₆]. - C₃₅H₃₈BFeN₂OP (600.3): calcd. C 70.03, H 6.38, N 4.67; found C 69.93, H 6.68, N 4.26.

Planar Chiral SAMP Hydrazone (S,S_p) -15e: According to GP3, a solution of (E)-12a (877 mg) in Et₂O (20 mL) was treated with a solution of *n*BuLi (1.1 equiv.) in hexane. After 9 h stirring at -70°C, 699 mg of benzophenone were added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = $4:1; 2\% \text{ NEt}_3$) provided planar chiral ortho-hydroxyalkylated hydrazone 15e. -Yield: 1.10 g (86%, orange-red crystals). $-R_f = 0.38$ (petroleum ether/diethyl ether = 7:1; 2% NEt₃). -de = 98%. $- [\alpha]_D^{25} = -398.8$ (CHCl₃, c = 0.74). – M.p. 55 °C. – IR (KBr): $\tilde{v} = 3430 \text{ cm}^{-1}$, 3083, 3057, 3026, 2969, 2925, 2873, 2851, 2187, 1597, 1560, 1490, 1446, 1385, 1346, 1262, 1225, 1176, 1109, 1063, 1028, 1003, 952, 907, 817, 756, 701, 672, 516, 460. – ¹H NMR (500 MHz, C₆D₆): $\delta = 1.26$ (m, 1 H, NCH₂CH₂ trans to NCH), 1.35 (m, 1 H, NCH₂CH₂ cis to NCH), 1.45 (m, 1 H, NCHCH₂ trans to NCH), 1.61 (m, 1 H, NCHC H_2 trans to NCH), 2.53 (dd, $^2J = 9.2$ Hz, $^{3}J = 7.7 \text{ Hz}, 1 \text{ H}, \text{ OCH}_{2}, 2.56 \text{ (m, 1 H, NCH}_{2}, 2.59 \text{ (ddd, }^{2}J =$ 9.7 Hz, ${}^{3}J = 7.6$ Hz, ${}^{3}J = 5.3$ Hz, 1 H, NCH₂), 2.66 (dd, ${}^{2}J =$ 9.2 Hz, ${}^{3}J = 3.9$ Hz, 1 H, OCH₂), 3.02 (s, 3 H, OCH₃), 3.16 (qd, $^{3}J = 7.6 \text{ Hz}, ^{3}J = 3.8 \text{ Hz}, 1 \text{ H}, \text{ NCH}, 3.82 (dd, <math>^{3}J = 2.7 \text{ Hz}, ^{4}J =$ 1.6 Hz, 1 H, $C_5H_3R_2$), 3.86 (t, $^3J = 2.7$ Hz, 1 H, $C_5H_3R_2$), 3.90 $(dd, {}^{3}J = 2.7 \text{ Hz}, {}^{4}J = 1.7 \text{ Hz}, 1 \text{ H}, C_{5}H_{3}R_{2}), 4.31 \text{ (s, 5 H, C}_{5}H_{5}),$ 7.01-7.17 (m, 9 H, m/p-C₆H₅), 7.22 (dm, $^3J = 9.4$ Hz, 2 H, N=C $o-C_6H_5$), 7.51 (broad d, $^3J = 7.3$ Hz, 2 H, CpC- $o-C_6H_{5(up)}$), 7.85 (broad d, ${}^{3}J = 5.5 \text{ Hz}$, 2 H, CpC-o-C₆H_{5(down)}), 9.10 (s, 1 H, OH). $- {}^{13}\text{C}$ NMR (125 MHz, C_6D_6): $\delta = 22.8$ (NCH₂CH₂), 26.9 (NCHCH₂), 56.2 (NCH₂), 58.5 (OCH₃), 66.6 (NCH), 67.5 $(C_5H_3R_2)$, 71.1 (C_5H_5) , 73.4 $(C_5H_3R_2)$, 74.2 (OCH_2) , 75.7 $(C_5H_3R_2)$, 77.7, 79.1 (*i*- $C_5H_3R_2$), 100.0 (CpCOH), 126.6, 126.7, 127.3, 127.6, 127.9, 128.2, 128.27, 128.34, 128.70 $(o/m/p-C_6H_5)$, 139.0 (N=C-i- C_6 H₅), 148.0, 151.0 (CpC-i- C_6 H₅), 163.8 (C=N). – EI-MS: $m/z = 584.3 (100) [M^+], 519.2 (74) [M^+ - C_5H_5], 470.1$ (19) $[M^+ - C_6H_{12}NO]$, 406.0 (71), 401.1 (26) $[M^+ - Ph_2COH]$, 388.0 (13) [406.0 - H₂O], 332.1 (26) [388.0 - Fe], 285.0 (13) [519.2]- HOPhC=N-SMP], 284.0 (14), 229.1 (27) [285.0 - Fe], 228.1 (35) [284.0 - Fe]. - C₃₆H₃₆FeN₂O₂ (584.5): calcd. C 73.97, H 6.21, N 4.79; found C 73.79, H 6.67, N 4.60.

Planar Chiral SAMP Hydrazone (S,S_p) -15f: According to GP3, a solution of (E)-12a (174 mg) in Et₂O (20 mL) was treated with a solution of *n*BuLi (1.1 equiv.) in hexane. After 9 h stirring at -70°C, 60 mg of DMF was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 4:1; 2% NEt₃) provided planar chiral ortho-formylated hydrazone 15f. - Yield: 173 mg (93%, orange powder). – $R_f = 0.27$ (petroleum ether/diethyl ether = 4:1; 2% NEt₃). $-de \ge 96\%$. $- [\alpha]_D^{25} = -40.7$ (CHCl₃, c =1.40). - M.p. 98 °C. - IR (KBr): $\tilde{v} = 3083 \text{ cm}^{-1}$, 2922, 2875, 2821, 2730, 2189, 1656, 1560, 1453, 1425, 1383, 1341, 1275, 1232, 1198, 1109, 1091, 1002, 905, 849, 821, 778, 715, 697, 499, 462. ¹H NMR (300 MHz, C_6D_6): $\delta = 1.36$ (m, 2 H, NCH_2CH_2), 1.55 (m, 1 H, NCHCH₂), 1.75 (m, 1 H, NCHCH₂), 2.45 (m, 1 H, NCH₂), 2.71 (m, 1 H, NCH₂), 3.16 (s, 3 H, OCH₃), 3.38 (m, 1 H, OCH_2), 3.57 (m, 1 H, OCH_2), 3.61 (m, 1 H, NCH), 4.01 (dd, $^3J =$ 2.4 Hz, ${}^{4}J = 1.4 \text{ Hz}$, 1 H, $R_{2}C_{5}H_{3}$), 4.06 (s, 5 H, $C_{5}H_{5}$), 4.12 (td, $^{3}J = 2.7 \text{ Hz}, J = 0.9 \text{ Hz}, 1 \text{ H}, R_{2}C_{5}H_{3}), 5.12 \text{ (m, 1 H, } R_{2}C_{5}H_{3}),$ 7.08-7.21 (m, 3 H, $m/p-C_6H_5$), 7.46 (dm, $^3J = 6.6$ Hz, 2 H, o- C_6H_5), 10.99 (s, 1 H, CHO). – ¹³C NMR (75 MHz, C_6D_6): δ = 23.4 (NCH₂CH₂), 26.9 (NCHCH₂), 55.3 (NCH), 59.0 (OCH₃), 66.8, 69.3, 71.3, 74.0 (R₂C₅H₃, NCH), 71.0 (C₅H₅), 75.7 (OCH₂), 79.8, 90.9 (i-R₂C₅H₃), 128.1 (p-C₆H₅), 128.4, 129.2 (o/m-C₆H₅), 139.0 (i-C₆H₅), 146.5 (C=N), 194.0 (CHO). – EI-MS: m/z = 430.2(25) [M⁺], 316.1 (100) [M⁺ - C₆H₁₂NO], 288.1 (22) [316.1 - CO], 185.1 (5) [Fc⁺], 129.1 (11) [Fc⁺ - Fe], 121.0 (11) [CpFe⁺]. -

 $\rm C_{24}H_{26}FeN_2O_2$ (430.3): calcd. C 66.99, H 6.09, N 6.51; found C 66.76, H 6.16, N 6.37.

Planar Chiral SAMP Hydrazone (S,S_p) -15g: According to GP3, a solution of (E)-12a (141 mg) in 5 mL Et₂O was treated with a solution of 1.1 equiv. nBuLi in hexane. After 9 h stirring at -70 °C, 134 mg of I₂ was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 7:1; 2% NEt₃) provided planar chiral ortho-iodinated hydrazone 15g. - Yield: 151 mg (82%, orange powder). $-R_f = 0.68$ (petroleum ether/diethyl ether = 2:1; $2\% \text{ NEt}_3$). $-de = 95\% - [\alpha]_D^{25} = -9.7 \text{ (CHCl}_3, c = 1.13). - \text{M.p.}$ 70 °C. – IR (CHCl₃): $\tilde{v} = 3094 \text{ cm}^{-1}$, 3082, 3056, 2923, 2872, 2827, 2732, 1640, 1598, 1578, 1490, 1459, 1447, 1414, 1376, 1353, 1338, 1321, 1281, 1259, 1217, 1198, 1154, 1107, 1071, 1026, 1003, 970, 920, 903, 880, 847, 819, 757, 722, 698, 680, 668, 504. - ¹H NMR (300 MHz, C_6D_6): $\delta = 1.33 - 1.52$ (m, 2 H, NCH_2CH_2), 1.63 $(dq, ^2J = 12.1 \text{ Hz}, ^3J = 7.7 \text{ Hz}, 1 \text{ H}, \text{ NCHC}H_2), 1.87 \text{ (m, 1 H,}$ NCHC H_2), 2.47 (ddd, ${}^2J = 10.1 \text{ Hz}$, ${}^3J = 7.7 \text{ Hz}$, ${}^3J = 6.1 \text{ Hz}$, 1 H, NCH₂), 2.77 (ddd, ${}^{2}J = 10.1 \text{ Hz}$, ${}^{3}J = 7.7 \text{ Hz}$, ${}^{3}J = 6.4 \text{ Hz}$, 1 H, NCH₂), 3.29 (s, 3 H, OCH₃), 3.58 (dd, ${}^{2}J = 8.7$ Hz, ${}^{3}J = 7.1$ Hz, 1 H, OCH₂), 3.91 (t, ${}^{3}J = 2.5 \text{ Hz}$, 1 H, R₂C₅H₃), 3.95 (m, 1 H, NCH), 3.98 (dd, ${}^{2}J = 8.7 \text{ Hz}$, ${}^{3}J = 3.7 \text{ Hz}$, 1 H, OCH₂), 4.03 (dd, $^{3}J = 2.5 \text{ Hz}, ^{4}J = 1.7 \text{ Hz}, 1 \text{ H}, R_{2}C_{5}H_{3}), 4.17 \text{ (s, 5 H, C}_{5}H_{5}), 4.47$ $(dd, {}^{3}J = 2.4 \text{ Hz}, {}^{4}J = 1.7 \text{ Hz}, 1 \text{ H}, R_{2}C_{5}H_{3}), 7.06 \text{ (tt, } {}^{3}J = 6.0 \text{ Hz},$ 4J = 1.3 Hz, 1 H, p-C₆H₅), 7.14 (m, 1 H, m-C₆H₅), 7.43 (dm, 3J = 6.7 Hz, 2 H, o-C₆H₅). $^{-13}$ C NMR (75 MHz, C₆D₆): δ = 23.5 (NCH₂CH₂), 27.3 (NCHCH₂), 55.2 (NCH₂), 59.1 (OCH₃), 66.6, 69.3, 70.2, 77.6 (R₂C₅H₃, NCH), 72.8 (*i*-R₂C₅H₃), 72.9 (C₅H₅), 76.1 (OCH₂), 87.1 (*i*-R₂C₅H₃), 127.8 (*p*-C₆H₅), 128.1, 129.6 (*o*/*m*-C₆H₅), 138.9 (i-C₆H₅), 145.8 (C=N). – EI-MS: m/z = 528.0 (71) [M⁺], $413.9 (100) [M^+ - C_6H_{12}NO], 310.8 (21) [C_5H_3IFeCp^+], 286.0 (11)$ [413.9 - HI], 231.0 (16), 230.0 (17) [286.0 - Fe], 182.8 (15) [310.8 - HI], 128.0 (17) [HI⁺], 127.0 (18) [I⁺], 111.0 (13), 109.0 (10), 97.0 (19), 96.0 (10), 95.0 (17), 85.1 (16), 83.0 (17), 82.0 (12), 81.0 (14), 71.1 (28), 70.0 (13), 69.0 (23), 67.0 (12), 57.1 (45) [FeH⁺], 56.1 (11) [Fe⁺], 55.1 (27). – HR-MS: $C_{23}H_{25}^{56}$ FeIN₂O: calcd. 528.036094; found 528.035966.

General Procedure for the *ortho*-Functionalization of (*Z*)-Ferrocenyl Ketone SAMP Hydrazones 12b and 12c (GP4): Hydrazone 12b—c was dissolved in diethyl ether or THF (10 mL/mmol) under argon and cooled down to -70 °C. A solution of *s*BuLi (1.1 equiv., 1.2 M in cyclohexane) was added dropwise and the reaction mixture was stirred for 9 h at -70 °C. Then the electrophile (1.2 equiv.) was added. After warming to room temp. overnight, the solution was cooled to 0 °C and quenched with saturated aqueous NH₄Cl, washed with saturated aqueous NaCl and dried over MgSO₄. After concentrating in vacuo, the crude product was purified by flash chromatography.

Planar Chiral SAMP Hydrazone (*S*,*S*_p)-18a: According to GP4, a solution of (*Z*)-12b (181 mg) in Et₂O (5 mL) was treated with a solution of *s*BuLi (1.1 equiv.) in hexane. After 9 h stirring at −70 °C, methyl iodide (46 μL) was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 10:1; 2% NEt₃) provided planar chiral orthomethylated hydrazone 18a. − Yield: 103 mg (55%, yellow-brown crystals). − R_f = 0.76 (petroleum ether/diethyl ether = 2:1). − de = 87%; (after chromatography: de ≥ 96%). − [a] $_D^{25}$ = −301.0 (CHCl₃, c = 1.09). − M.p. 62 °C. − IR (CHCl₃): \tilde{v} = 3095 cm $^{-1}$, 2963, 2922, 2870, 2826, 2731, 1667, 1592, 1456, 1416, 1377, 1356, 1321, 1278, 1256, 1195, 1132, 1107, 1051, 1001, 970, 955, 925, 904, 875, 819, 757, 682, 668, 484, 455. − 1 H NMR (major isomer, 300 MHz, C₆D₆): δ = 1.38 (m, 2 H,

 NCH_2CH_2), 1.39 (d, $^3J = 7.7 Hz$, 3 H, $CHCH_3$), 1.53 (m, 1 H, NCHC H_2 trans to NCH), 1.53 (d, $^3J = 6.7$ Hz, 3 H, CHC H_3), 1.88 (m, 1 H, NCHCH₂ cis to NCH), 1.98 (s, 3 H, RC₅H₃CH₃), 2.06 $(dt, {}^{3}J = 7.4 \text{ Hz}, {}^{2.3}J = 9.1 \text{ Hz}, 1 \text{ H}, NCH_{2} \text{ cis to NCH}), 2.58 (ddd,$ $^{2}J = 9.7 \text{ Hz}, ^{3}J = 7.4 \text{ Hz}, ^{3}J = 5.7 \text{ Hz}, 1 \text{ H}, \text{ NCH}_{2} \text{ trans to NCH}),$ 3.22 (sept, ${}^{3}J = 6.7 \text{ Hz}$, 1 H, $CH(CH_3)_2$), 3.22 (s, 3 H, OCH_3), 3.34 (t, ${}^{2,3}J = 8.2 \text{ Hz}$, 1 H, OCH₂), 3.63 (qd, ${}^{3}J = 7.4 \text{ Hz}$, ${}^{3}J = 4.7 \text{ Hz}$, 1 H, NCH), 3.77 (dd, ${}^{2}J = 8.8$ Hz, ${}^{3}J = 4.0$ Hz, 1 H, OCH₂), 3.91 $(m, 1 H, R_2C_5H_3), 3.94 (m, 1 H, R_2C_5H_3), 3.97 (m, 1 H, R_2C_5H_3),$ 4.01 (s, 5 H, C_5H_5). – ¹H NMR (minor isomer, 300 MHz, C_6D_6): $\delta = 1.30 - 1.50$ (m, 2 H, NCH₂CH₂), 1.42 (d, ${}^{3}J = 6.7$ Hz, 3 H, $CHCH_3$), 1.53 (d, ${}^3J = 6.7 \text{ Hz}$, 3 H, $CHCH_3$), 1.62 (m, 1 H, NCHCH2 trans to NCH), 1.88 (m, 1 H, NCHCH2 cis to NCH), 1.88 (s, 3 H, RC₅H₃CH₃), 2.12 (dt, ${}^{2,3}J = 9.1$ Hz, ${}^{3}J = 7.1$ Hz, 1 H, NCH₂ cis to NCH), 2.73 (ddd, ${}^{2}J = 9.7$ Hz, ${}^{3}J = 8.1$ Hz, ${}^{3}J =$ 5.7 Hz, 1 H, NCH₂ trans to NCH), 3.14 (sept, $^3J = 6.7$ Hz, 1 H, $CH(CH_3)_2$), 3.22 (s, 3 H, OCH₃), 3.36 (t, $^2J = 9.7$ Hz, $^3J = 8.1$ Hz, 1 H, OCH₂), 3.55 (qd, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 3.7$ Hz, 1 H, NCH), 3.75 $(dd, {}^{2}J = 9.1 \text{ Hz}, {}^{3}J = 4.0 \text{ Hz}, 1 \text{ H}, OCH_{2}), 3.91 (t, {}^{3}J = 2.4 \text{ Hz},$ 1 H, $R_2C_5H_3$), 3.97 (t, $^3J = 2.4$ Hz, 1 H, $R_2C_5H_3$), 3.99 (s, 5 H, C_5H_5), 4.36 (dd, $^3J = 2.4 \text{ Hz}$, $^4J = 1.7 \text{ Hz}$, 1 H, OCH₂). $- ^{13}\text{C}$ NMR (major isomer, 75 MHz, C_6D_6): $\delta = 16.0 (RC_5H_3CH_3)$, 21.3, 24.8 (CHCH₃), 23.2 (NCH₂CH₂), 27.5 (NCHCH₂), 38.4 (CH(CH₃)₂), 53.7 (NCH₂), 58.8 (OCH₃), 67.1, 67.2, 68.7, 68.9 (R₂C₅H₃, NCH), 70.1 (C₅H₅), 76.9 (OCH₂), 83.0, 89.0 (*i*-OCH₂), 156.6 (C=N). - ^{13}C NMR (minor isomer, 75 MHz, C_6D_6): δ = 14.5 (RC₅H₃CH₃), 22.9 (NCH₂CH₂), 23.2, 23.4 (CHCH₃), 27.5 (NCHCH₂), 37.8 (CH(CH₃)₂), 54.1 (NCH₂), 58.9 (OCH₃), 66.2, 66.9, 69.3, 69.6 (R₂C₅H₃, NCH), 69.9 (C₅H₅), 76.4 (OCH₂), 82.9, 87.4 (*i*-R₂C₅H₃), 157.7 (C=N). – EI-MS: m/z = 382.1 (100) [M⁺], $337.1\ (11)\ [M^{+}-CH_{2}OCH_{3}],\ 317.0\ (31)\ [M^{+}-C_{5}H_{5}],\ 272.1\ (22),$ 268.0 (59) $[M^+ - C_6H_{12}NO]$, 225.0 (29), 199.0 (25) $[FcCH_3^+]$, 120.9 (18) [CpFe $^+$]. - C₂₁H₃₀FeN₂O (382.3): calcd. C 65.97, H 7.91, N 7.33; found C 65.67, H 7.85, N 7.19.

Planar Chiral SAMP Hydrazone (S_0 , S_0)-18b: According to GP4, a solution of (Z)-12c (520 mg) in THF (15 mL) was treated with a solution of sBuLi (1.1 equiv.) in hexane. After 9 h stirring at -70 °C, methyl iodide (111 µL) was added. The reaction mixture was allowed to warm to room temp. overnight. After work up, flash chromatography (petroleum ether/diethyl ether = 7:1; 2% NEt₃) provided planar chiral orthomethylated hydrazone 18b. - Yield: 467 mg (87%, orange powder). $-R_f = 0.70$ (hexane/diethyl ether = 4:1; 2% NEt₃). - de = 90% (after chromatography: $de \ge 96\%$). - $[\alpha]_D^{25} = -222.7 \text{ (CHCl}_3, c = 0.77). - \text{M.p. } 89 \text{ °C.} - \text{IR (KBr)}: \tilde{v} =$ 3096 cm^{-1} , 2936, 2916, 2852, 1654, 1584, 1445, 1419, 1373, 1340, 1298, 1279, 1264, 1226, 1193, 1137, 1107, 1093, 1044, 1001, 983, 970, 935, 904, 889, 817, 766, 690, 629, 590, 481. – ¹H NMR (major isomer, 300 MHz, C_6D_6): $\delta = 1.29 - 2.26$ [m, 15 H, (CH₂)₅, β -ring-CH₂, NCH₂], 1.98 (s, 3 H, CH₃), 2.59 (ddd, ${}^{2}J = 9.7$ Hz, ${}^{3}J =$ 7.4 Hz, ${}^{3}J = 6.0$ Hz, 1 H, NCH₂), 2.90 (tt, ${}^{3}J = 11.4$ Hz, ${}^{3}J =$ 3.4 Hz, 1 H, N=CCH), 3.22 (s, 3 H, OCH₃), 3.33 (t, $^{2,3}J = 8.2$ Hz, 1 H, OCH₂), 3.62 (qd, ${}^{3}J = 7.4$ Hz, ${}^{3}J = 4.0$ Hz, 1 H, NCH), 3.77 $(dd, {}^{2}J = 7.7 \text{ Hz}, {}^{3}J = 4.0 \text{ Hz}, 1 \text{ H, OCH}_{2}), 3.90 (dd, {}^{3}J = 2.4 \text{ Hz},$ $^{4}J = 1.4 \text{ Hz}, 1 \text{ H}, C_{5}H_{3}R_{2}), 3.95 \text{ (t, }^{3}J = 2.4 \text{ Hz}, 1 \text{ H}, C_{5}H_{3}R_{2}),$ 3.98 (m, 1 H, $C_5H_3R_2$), 4.05 (s, 5 H, C_5H_5). – ¹H NMR (minor isomer, 300 MHz, C_6D_6): $\delta = 1.30-1.96$ (m, 15 H, $(CH_2)_5$, β -ring- CH_2 , NCH_2), 1.91 (s, 3 H, CH_3), 2.77 (ddd, $^2J = 9.6 Hz$, $^3J =$ 7.7 Hz, ${}^{3}J = 5.5$ Hz, 1 H, NCH₂), 2.86 (tt, ${}^{3}J = 11.5$ Hz, ${}^{3}J =$ 3.3 Hz, 1 H, N=CCH), 3.23 (s, 3 H, OCH₃), 3.39 (dd, ${}^{2}J$ = 8.8 Hz, $^{3}J = 8.0 \text{ Hz}, 1 \text{ H, OCH}_{2}, 3.58 \text{ (qd, }^{3}J = 7.4 \text{ Hz}, ^{3}J = 3.6 \text{ Hz}, 1$ H, NCH), 3.79 (dd, ${}^{2}J = 8.8 \text{ Hz}$, ${}^{3}J = 3.9 \text{ Hz}$, 1 H, OCH₂), 3.91 (t, ${}^{3}J = 2.5 \text{ Hz}$, 1 H, C₅H₃R₂), 3.97 (dd, ${}^{3}J = 2.5 \text{ Hz}$, ${}^{4}J = 1.4 \text{ Hz}$, 1 H, $C_5H_3R_2$), 4.04 (s, 5 H, C_5H_5), 4.40 (dd, $^3J = 2.5$ Hz, $^4J =$

1.4 Hz, 1 H, $C_5H_3R_2$). - ¹³C NMR (major isomer, 75 MHz, C_6D_6): $\delta = 16.0$ (CH₃), 23.2 (NCH₂CH₂), 26.7, 27.0, 27.3, 27.6, 31.5, 35.5 (CH₂), 49.0 (N=CCH), 53.8 (NCH₂), 58.8 (OCH₃), 67.0, 67.1, 68.7, 68.8 ($C_5H_3R_2$, NCH), 69.9 (C_5H_5), 76.9 (OCH₂), 83.0, 89.3 (*i*- $C_5H_3R_2$), 156.1 (C=N). - ¹³C NMR (minor isomer, 75 MHz, C_6D_6): $\delta = 14.5$ (CH₃), 23.0 (NCH₂CH₂), 26.7, 27.2, 27.3, 27.6, 33.6, 33.9 (CH₂), 48.6 (N=CCH), 54.3 (NCH₂), 59.0 (OCH₃), 66.2, 67.1, 69.4, 69.6 ($C_5H_3R_2$, NCH), 69.8 (C_5H_5), 76.5 (OCH₂), 83.0 (*i*- $C_5H_3R_2$), 156.2 (C=N). - EI-MS: m/z = 422.1 (81) [M⁺], 377.0 (14) [M⁺ - CH₂OCH₃], 357.0 (26) [M⁺ - C₅H₅], 308.0 (100) [M⁺ - C₆H₁₂NO], 224.9 (35) [H₃CC₁₀H₈CN⁺], 198.9 (35) [Fc - CH₃⁺], 187.9 (11), 143.0 (13) [198.9 - Fe], 120.9 (47) [CpFe⁺], 83.1 (10) [C₆H₁₁⁺], 70.1 (20), 56.1 (12) [Fe⁺], 55.1 (38) [C₄H₇⁺], 45.2 (19) [CH₃OCH₂⁺]. - C₂₄H₃₄FeN₂O (422.4): calcd. C 68.24, H 8.11, N 6.63; found C 67.89, H 8.36, N 6.40.

Planar Chiral SAMP Hydrazone (S,R_p) -20: To a solution of hydrazone 12d (445 mg) in THF (10 mL) was added dropwise a solution of nBuLi (1.1 equiv., 1.5 m in hexane) at −70 °C. After 2 h stirring at this temp., another 1.1 equiv. of nBuLi was added and stirring was continued for 7 h. Then methyl iodide (183 μ L) was added. The reaction mixture was allowed to warm to room temp. overnight and worked up according to GP3. Planar chiral hydrazone 20 was obtained after purification by flash chromatography (hexane/diethyl ether = 4:1). - Yield: 386 mg (74%, red oil). $-R_f = 0.58$ (hexane/diethyl ether = 4:1). $-de \ge 96\%$. - $[\alpha]_D^{25} = +227.3 \text{ (CHCl}_3, c = 0.35). - \text{IR (KBr)}: \tilde{v} = 3093 \text{ cm}^{-1}, 2957,$ 2928, 2872, 2828, 2732, 1686, 1655, 1618, 1570, 1528, 1456, 1378, 1346, 1291, 1225, 1199, 1123, 1107, 1054, 1002, 968, 925, 904, 876, 809, 757, 707, 668, 491, 454. - ¹H NMR (300 MHz, C_6D_6): $\delta =$ $0.80 \text{ (t, }^{3}J = 7.4 \text{ Hz, } 3 \text{ H, } \text{CH}_{2}\text{C}H_{3}), 1.22 \text{ (sext, }^{3}J = 7.4 \text{ Hz, } 2 \text{ H,}$ CH_2CH_3), 1.54 (pent, ${}^3J = 7.7 \text{ Hz}$, 2 H, $C_4H_2SCH_2CH_2$), 1.50-1.84 (m, 3 H, β-ring-CH₂), 2.06 (m, 1 H, β-ring-CH₂), 2.18 (s, 3 H, RC₅H₃CH₃), 2.61 (t, ${}^{3}J = 7.7$ Hz, 2 H, C₄H₂SCH₂), 2.64 (m, 1 H, NCH₂), 3.20 (s, 3 H, OCH₃), 3.27 (m, 1 H, NCH₂), 3.51 $(dd, {}^{2}J = 8.5 Hz, {}^{3}J = 7.7 Hz, 1 H, OCH_{2}), 3.68 (m, 1 H, NCH),$ 3.74 (dd, ${}^{2}J = 8.5 \text{ Hz}$, ${}^{3}J = 4.1 \text{ Hz}$, 1 H, OCH₂), 4.00 (t, ${}^{3}J =$ 2.5 Hz, 1 H, $C_5H_3R_2$), 4.10 (dd, $^3J = 1.9$ Hz, $^4J = 1.7$ Hz, 1 H, $C_5H_3R_2$), 4.22 (s, 5 H, C_5H_5), 4.33 (dd, $^3J = 2.5$ Hz, $^4J = 1.7$ Hz, 1H, $C_5H_3R_2$), 6.52 (d, $^3J = 3.8$, 1H, C_4H_2S), 7.22 (d, $^3J = 3.9$, 1 H, C_4H_2S). - ¹³C NMR (75 MHz, C_6D_6): $\delta = 13.9$ (CH₂CH₃), 15.6 (RC₅H₃CH₃), 22.5, 23.0 (CH₂CH₃, NCH₂CH₂), 27.9 (NCHCH₂), 29.9 (C₄H₂SCH₂CH₂), 34.0 (C₄H₂SCH₂), 54.7 (NCH₂), 59.0 (OCH₃), 66.3, 66.8, 70.7, 71.1 (C₅H₃R₂, NCH), 70.8 (C_5H_5) , 76.5 (OCH₂), 84.2, 86.3 (*i*-C₅H₃R₂), 122.7, 132.0 (C₄H₂S), 134.1, 149.6 (i-C₄H₂S), 154.1 (C=N). – EI-MS: m/z = 478.1 (68) $[M^+]$, 364.0 (100) $[M^+ - C_6H_{12}NO]$, 224.9 (13) $[CH_3C_{10}H_8Fe^+]$, 198.9 (50), 143.0 (35) [198.9 - Fe], 141.0 (12), 120.9 (38) [CpFe⁺], 111.0 (12), 105.0 (10), 97.0 (14), 71.1 (10), 70.1 (14), 57.1 (13) $[FeH^+]$, 56.0 (10) $[Fe^+]$, 55.1 (13), 45.3 (23) $[CH=S^+]$ or CH₃OCH₂⁺]. - C₂₆H₃₄FeN₂OS (478.5): calcd. C 65.27, H 7.16, N 5.85; found C 65.02, H 7.38, N 6.16.

General Procedure for Hydrazone Cleavage with Ozone (GP5): A solution of hydrazone 15 in dichloromethane (50 mL/mmol) was cooled to -78 °C. O₃ was then bubbled through the solution under TLC control (50 L/h). After warming to room temp. and concentrating in vacuo, the crude product was purified by flash chromatography.

General Procedure for Hydrazone Cleavage with TiCl₃ (GP6): A 20% aqueous solution of TiCl₃ was added in one portion to a solution of hydrazone 15 or 18 in DME (40 mL/mmol) under argon. The reaction mixture was refluxed until the purple color became red. The mixture was diluted with diethyl ether and washed with

aqueous NH₃/NH₄Cl buffer, then with saturated aqueous NaCl. After drying over MgSO₄ and concentrating in vacuo, the crude product was purified by flash chromatography.

General Procedure for Hydrazone Cleavage with SnCl₂ (GP7): $SnCl_2 \cdot 2H_2O$ (1.1 equiv.) and H_2O (2.5 mL/mmol) were added separately to a solution of the hydrazone 15 in DME (40 mL/mmol) under argon. The reaction mixture was refluxed under TLC control. To drive the reaction to completion, it was necessary to add further portions of $SnCl_2 \cdot 2H_2O$ (1 to 6 equiv.), as the Sn^{II} species was deactivated after some time. The mixture was diluted with diethyl ether, washed with aqueous NH_3/NH_4Cl buffer (pH 10) and finally with saturated aqueous NaCl. After drying over $MgSO_4$ and concentrating in vacuo, the crude product was purified by flash chromatography.

 (R_p) -(2-Methylferrocenyl)(phenyl)methanone (9a): a) According to GP6, a solution of hydrazone 15a (201 mg) in DME (20 mL) was treated with a 20% aqueous solution of TiCl₃ (2.5 equiv.) and refluxed for 135 min. Work up and flash chromatography (CH₂Cl₂) provided planar chiral ketone 9a. - b) According to GP5, ozone was bubbled through a solution of hydrazone 15a (204 mg) in CH₂Cl₂ (25 mL) for 100 s. The product was obtained after purification by flash chromatography. - Yield: a) 131 mg (89%, dark red crystals); b) 75 mg (50%). $- R_f = 0.68 \text{ (CH}_2\text{Cl}_2\text{)}. - \text{a) } ee = 90\%$ (HPLC: Chiralcel OD2, cHex/iPrOH = 95:5, 0.5 mL/min, ent-1: 8.6 min; ent-2: 9.7 min); b) ee = 89%. $- [\alpha]_D^{25} = +258.2$ (c = 1.06, CHCl₃). – M.p. 107 °C. – IR (KBr): $\tilde{v} = 3066 \text{ cm}^{-1}$, 2986, 2959, 2925, 2854, 1626, 1594, 1574, 1453, 1412, 1380, 1344, 1275, 1223, 1182, 1107, 1076, 1050, 1036, 1003, 890, 828, 807, 729, 701, 669, 603, 539, 511, 489. - ¹H NMR (300 MHz, CDCl₃): $\delta = 2.37$ (s, 3 H, CH₃), 4.13 (s, 5 H, C₅H₅), 4.33 (t, ${}^{3}J = 2.7$ Hz, 1 H, R₂C₅H₃), 4.49 (m, 2 H, $R_2C_5H_3$), 7.43 (tm, $^3J = 7.4$ Hz, 2 H, m- C_6H_5), 7.52 (tt, ${}^{3}J = 7.1 \text{ Hz}$, ${}^{4}J = 1.4 \text{ Hz}$, 1 H, $p\text{-C}_{6}\text{H}_{5}$), 7.85 (dm, ${}^{3}J = 6.7 \text{ Hz}$, 2 H, o-C₆H₅). - ¹³C NMR (75 MHz, CDCl₃): δ = 15.6 (CH₃), 69.9, 73.0, 75.1 ($R_2C_5H_3$), 71.2 (C_5H_5), 76.7, 88.8 ($i-R_2C_5H_3$), 128.5, 128.6 (o/m-C₆H₅), 131.7 (p-C₆H₅), 140.9 (i-C₆H₅), 201.4 (C= O). – EI-MS: $m/z = 304.2 (100) [M^+], 199.2 (34) [M^+ - C_6H_5CO],$ 153.2 (15), 152.1 (16), 149.1 (23), 121.1 (28) [CpFe⁺], 105.1 (24) $[C_6H_5CO^+]$, 83.1 (11), 81.1 (12), 77.1 (31) $[C_6H_5^+]$, 73.1 (12), 71.2 (16), 70.2 (12), 69.2 (14), 57.1 (35) [FeH⁺], 56.0 (27) [Fe⁺], 55.1 (27), 51.1 (13), 45.9 (17). - C₁₈H₁₆FeO (304.2): calcd. C 71.08, H 5.30; found C 71.03, H 5.38.

 (S_p) -Phenyl[2-(1,1,1-trimethylsilyl)ferrocenyl]methanone (9b): According to GP5, ozone was bubbled through a solution of hydrazone 15b (159 mg) in CH₂Cl₂ (25 mL) for 165 s. Product 9b was obtained after purification by flash chromatography (CH₂Cl₂). -Yield: 92 mg (76%, dark red crystals). – $R_f = 0.89$ (petroleum ether/diethyl ether = 2:1). - ee = 92% [HPLC: (S,S)-Whelk-01, cHex/iPrOH = 99:1, 0.5 mL/min, ent-1: 6.5 min; ent-2: 6.9 min]. - $[\alpha]_D^{25} = +269.2 \text{ (CHCl}_3, c = 0.95). - \text{M.p. } 140 \text{ °C.} - \text{IR (KBr)}:$ $\tilde{v} = 3089 \text{ cm}^{-1}$, 3065, 2951, 2248, 1789, 1725, 1632, 1596, 1574, 1446, 1415, 1382, 1328, 1247, 1191, 1173, 1158, 1107, 1080, 1049, 1028, 1005, 886, 842, 825, 755, 729, 696, 640, 620, 574, 511, 493. $- {}^{1}H$ NMR (300 MHz, CDCl₃): $\delta = 0.36$ [s, 9 H, Si(CH₃)₃], 4.22 (s, 5 H, C_5H_5), 4.57 (dd, ${}^3J = 2.5$ Hz, ${}^4J = 1.4$ Hz, 1 H, $R_2C_5H_3$), 4.64 (t, ${}^{3}J = 2.5 \text{ Hz}$, 1 H, $R_{2}C_{5}H_{3}$), 4.77 (dd, ${}^{3}J = 2.5 \text{ Hz}$, ${}^{4}J =$ 1.1 Hz, 1 H, $R_2C_5H_3$), 7.44 (tm, $^3J = 6.9$ Hz, 2 H, m- C_6H_5), 7.52 (tt, ${}^{3}J = 7.3 \text{ Hz}$, ${}^{4}J = 1.4 \text{ Hz}$, 1 H, p-C₆H₅), 8.28 (dm, ${}^{3}J = 6.9 \text{ Hz}$, 2 H, o-C₆H₅). - ¹³C NMR (75 MHz, CDCl₃): $\delta = 0.5$ [Si(CH₃)₃], 70.1 (C_5H_5) , 74.0, 76.7, 79.2 $(R_2C_5H_3)$, 75.6, 83.0 $(i-R_2C_5H_3)$, 128.1, 128.3 (o/m-C₆H₅), 131.3 (p-C₆H₅), 140.1 (i-C₆H₅), 199.9 (C= O). – EI-MS: $m/z = 362.0 (44) [M^+], 347.0 (100) [M^+ - CH_3],$

120.9 (9) [CpFe $^+$]. – HR-MS: $C_{20}H_{22}^{\ 56}$ FeOSi: calcd. 362.07893; found 362.07906.

 (S_p) -[2-(1-Boranato-1,1-diphenylphosphanyl)ferrocenyl](phenyl)methanone (9c): According to GP5, ozone was bubbled through a solution of hydrazone 15d (207 mg) in CH₂Cl₂ (30 mL) for 85 s. The product was obtained after purification by flash chromatography (CH₂Cl₂). – Yield: 140 mg (83%, red crystals). – $R_f = 0.74$ (CH_2Cl_2) . – ee = 91% (¹H NMR, Pirkle alcohol, CDCl₃). – $[\alpha]_D^{25} = -18.0 \text{ (CHCl}_3, c = 0.94). - \text{M.p. } 174 \text{ °C.} - \text{IR (KBr): } \tilde{v} =$ 3098 cm^{-1} , 3072, 2922, 2850, 2455, 2379, 2348, 2261, 1885, 1814, 1777, 1739, 1721, 1705, 1687, 1632, 1597, 1575, 1547, 1527, 1498, 1481, 1435, 1415, 1384, 1354, 1320, 1251, 1165, 1151, 1139, 1105, 1060, 1028, 879, 850, 827, 801, 742, 720, 695, 644, 610, 566, 509, 483. - ¹H NMR (300 MHz, CDCl₃): $\delta = 4.36$ (broad s, 1 H, C₅H₃R₂), 4.40 (s, 5 H, C₅H₅), 4.70 (broad s, 1 H, C₅H₃R₂), 4.93 (broad s, 1 H, $C_5H_3R_2$), 7.28-7.50 (m, 9 H, m/p- C_6H_5), 7.62 (m, 2 H), 7.75 (m, 2 H), 7.84 (d, ${}^{3}J = 7.1$ Hz, 2 H, $o \cdot C_{6}H_{5}$). $- {}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 72.6 (C_5H_5)$, 72.8 (*i*-C₅H₃R₂), 73.6 (d, $J_{\rm CP} = 7.4$ Hz), 77.8 (d, $J_{\rm CP} = 6.8$ Hz), 79.5 (d, $J_{\rm CP} = 8.0$ Hz, $C_5H_3R_2$), 83.9 (d, ${}^1J_{CP} = 6.3 \text{ Hz}$, i- $C_5H_3R_2$), 128.7, 129.2 (O=Co/m- C_6H_5), 128.85 (d, $^3J_{CP} = 9.8$ Hz, P-m- C_6H_5), 128.87 (O=C-p- C_6H_5), 131.2 (d, ${}^4J_{CP} = 2.3 \text{ Hz}$), 131.3 (d, ${}^4J_{CP} = 2.3 \text{ Hz}$, P-p- C_6H_5), 131.5 (d, ${}^1J_{CP} = 60.7 \text{ Hz}$), 132.5 (d, ${}^1J_{CP} = 57.8 \text{ Hz}$, P-i- C_6H_5), 133.5 (d, ${}^2J_{CP} = 6.3 \text{ Hz}$), 134.3 (d, ${}^2J_{CP} = 6.9 \text{ Hz}$, P-o- C_6H_5), 139.4 (O=C-*i*- C_6H_5), 194.5 (C=O). - ³¹P NMR (C_6D_6 , 162 MHz): +21.50 (broad). - EI-MS: m/z = 488.0 (5) [M⁺], 474.0 $(100) [M^+ - BH_3], 408.0 (60) [474.0 - C_5H_6], 397.0 (11), 228.0$ (13), 182.9 (10), 56.9 (10) [Fe $^+$]. – $C_{29}H_{26}BFeOP$ (488.2): calcd. C 71.35, H 5.37; found C 71.11, H 5.70.

 (S_n) -[2-(1,1-Diphenylphosphanyl)ferrocenyl](phenyl)methanone: According to GP7, a solution of hydrazone 15c (193 mg) in DME (15 mL) was treated with SnCl₂·2H₂O (82 mg) and H₂O (1.0 mL). The reaction mixture was refluxed for 4 h. Then further portions of SnCl₂·2H₂O (165 mg) and H₂O (1 mL) were added and refluxing was continued overnight. Work up and flash chromatography provided the planar chiral ketone (petroleum ether/diethyl ether = 4:1). – Yield: 55 mg (35%, red-brown crystals). – $R_f = 0.82$ (petroleum ether/diethyl ether = 2:1). – $[\alpha]_D^{25}$ = -116.0 (CHCl₃, c = 0.76). – M.p. 190 °C. – IR (KBr): $\tilde{\nu} = 3107 \text{ cm}^{-1}$, 3091, 3064, 3046, 3001, 2924, 2852, 2246, 1628, 1597, 1574, 1525, 1478, 1445, 1421, 1384, 1351, 1326, 1255, 1192, 1165, 1120, 1107, 1091, 1074, 1053, 1027, 1004, 938, 908, 877, 853, 826, 798, 752, 700. – ¹H NMR (300 MHz, CDCl₃): $\delta = 3.95$ (m, 1 H, R₂C₅H₃), 4.21 (s, 5 H, C_5H_5), 4.55 (t, $^3J = 2.7$ Hz, 1 H, $R_2C_5H_3$), 4.91 (m, 1 H, $R_2C_5H_3$), 7.20-7.56 (m, 13 H, C_6H_5), 7.90 (dm, $^3J = 7.1$ Hz, 2 H, $o-C_6H_5$). - 13 C NMR (75 MHz, CDCl₃): δ = 71.5 (d, J_{CP} = 1.8 Hz, C_5H_5), 72.8, 75.9, 76.2 (d, $J_{CP} = 4.9 \text{ Hz}$, $R_2C_5H_3$), 81.1 (d, ${}^1J_{CP} = 17.7 \text{ Hz}$, $i-R_2C_5H_3$), 128.0 (d, ${}^3J_{CP} = 8.0 \text{ Hz}$), 128.2 (d, ${}^3J_{CP} = 7.4 \text{ Hz}$, P-m- C_6H_5), 128.1, 128.9, 131.4 (p- C_6H_5), 132.2 (d, $^2J_{CP} = 19.5 \text{ Hz}$), 135.1 (d, ${}^{2}J_{CP} = 22.0 \text{ Hz}$, P-o-C₆H₅), 139.1 (d, ${}^{1}J_{CP} = 15.3 \text{ Hz}$), 139.7 (d, ${}^{1}J_{CP} = 12.2 \text{ Hz}$, P-i-C₆H₅), 139.5 (O=C-i-C₆H₅), 198.4 (C=O). - EI-MS: $m/z = 474.0 (100) [M^+], 408.0 (100) [M^+ -$ CpH], 397.0 (22) $[M^+ - C_6H_5]$, 361.0 (14), 360.0 (11), 353.0 (14) [M⁺ - CpFe], 304.1 (12), 283.9 (11), 257.0 (13), 237.2 (14), 228.1 (43), 215.0 (14), 202.0 (12), 183.0 (13), 170.0 (15), 152.0 (12), 120.9 (38) [CpFe⁺], 97.1 (11), 95.0 (10), 57.1 (14) [FeH⁺], 56.0 (12) [Fe⁺]. - HR-MS: $C_{29}H_{23}^{56}$ FeOP: calcd. 474.08359; found 474.08342.

(R_p)-{2-[Hydroxy(diphenyl)methyl]ferrocenyl}(phenyl)methanone (9d): a) According to GP7, a solution of hydrazone 15e (244 mg) in DME (20 mL) was treated with SnCl₂·2H₂O (104 mg) and H₂O (1.4 mL). The reaction mixture was refluxed for 10 h, adding a further portion of SnCl₂·2H₂O (6.0 equiv.) in the meantime. Work up

and flash chromatography (CH₂Cl₂) provided planar chiral ketone 9d. − b) According to GP5, ozone was bubbled through a solution of hydrazone 15e (235 mg) in CH₂Cl₂ (25 mL) for 80 s. Compound 9d was obtained after purification by flash chromatography (CH₂Cl₂). - Yield: a) 168 mg (85%, dark red crystals). b) 133 mg (70%). – $R_f = 0.61$ (petroleum ether/diethyl ether = 2:1). – a) ee = 96% (1H NMR, Pirkle alcohol, CDCl₃); b) ee = 85%. - $[\alpha]_{D}^{25} = +311.7 \text{ (CHCl}_3, c = 0.97). - \text{M.p. } 198 \text{ °C.} - \text{IR (CHCl}_3):$ $\tilde{v} = 3450 \text{ cm}^{-1}$, 3227, 3104, 3086, 3055, 1609, 1575, 1533, 1488, 1446, 1427, 1405, 1385, 1339, 1252, 1222, 1196, 1177, 1150, 1121, 1066, 1038, 1024, 1009, 999, 932, 845, 836, 829, 762, 740, 700. -¹H NMR (300 MHz, C_6D_6): $\delta = 3.94$ (m, 1 H, $R_2C_5H_3$), 3.98 (m, 1 H, $R_2C_5H_3$), 4.15 (s, 5 H, C_5H_5), 4.28 (m, 1 H, $R_2C_5H_3$), 6.88-7.26 (m, 9 H, C_6H_5), 7.56 (t, $^3J = 7.7$ Hz, 4 H, C_6H_5), 7.85(d, ${}^{3}J = 7.1 \text{ Hz}$, 2 H, C₆H₅), 8.20 (s, 1 H, OH). – ${}^{1}\text{H}$ NMR (300 MHz, CDCl₃): $\delta = 3.92$ (m, 1 H, R₂C₅H₃), 4.34 (s, 5 H, C_5H_5), 4.45 (m, 1 H, $R_2C_5H_3$), 4.55 (m, 1 H, $R_2C_5H_3$), 7.05-7.66 (m, 15 H, C_6H_5), 7.72 (s, 1 H, OH). $- {}^{13}C$ NMR (75 MHz, CDCl₃): $\delta = 70.3, 73.7, 78.9 (R_2C_5H_3), 72.0 (C_5H_5), 75.2, 77.7 (i-R_2C_5H_3),$ 106.9 (COH), 127.3, 127.5, 132.5 (*p*-C₆H₅), 127.89, 127.95, 128.01, 128.4, 128.7, 128.9 (o/m-C₆H₅), 140.4, 146.7, 149.5 (i-C₆H₅), 204.4 (C=O). – EI-MS: m/z = 472.0 (46) [M⁺], 406.9 (100) [M⁺ – Cp], 361.0 (31), 282.9 (12), 105.0 (17) [PhCO⁺], 77.0 (16) [Ph⁺], 60.0 (14), 59.1 (19), 57.1 (10) [FeH⁺]. $- C_{30}H_{24}FeO_2$ (472.4): calcd. C 76.28, H 5.12; found C 76.30, H 5.53.

 (R_p) -[(2-Formyl)ferrocenyl](phenyl)methanone (9e): According to GP5, ozone was bubbled through a solution of hydrazone 15f (160 mg) in CH₂Cl₂ (25 mL) for 100 s. Compound 9e was obtained after purification by flash chromatography (CH2Cl2) . - Yield: 86 mg (73%, black-red crystals). $- R_f = 0.34 \text{ (CH}_2\text{Cl}_2\text{)}. - ee =$ 90% (1H NMR after quantitative conversion with SAMP). - $[\alpha]_D^{25} = -409.3$ (CHCl₃, c = 0.53). – M.p. 80 °C (decomposition). – IR (KBr): $\tilde{v} = 3100 \text{ cm}^{-1}$, 3062, 3028, 2960, 2929, 2871, 2768, 2649, 2519, 2279, 2267, 1777, 1673, 1639, 1598, 1576, 1489, 1440, 1421, 1384, 1333, 1269, 1230, 1179, 1160, 1108, 1076, 1051, 1027, 1004, 898, 855, 832, 800, 763, 728, 699, 667, 629, 619, 504, 490, 463. – ¹H NMR (300 MHz, C_6D_6): $\delta = 3.85$ (s, 5 H, C_5H_5), 4.11 $(t, {}^{3}J = 2.7 \text{ Hz}, 1 \text{ H}, R_{2}C_{5}H_{3}), 4.43 \text{ (dd, } {}^{3}J = 2.7 \text{ Hz}, {}^{4}J = 1.3 \text{ Hz},$ 1 H, $R_2C_5H_3$), 5.16 (dd, $^3J = 2.7$ Hz, $^4J = 1.3$ Hz, 1 H, $R_2C_5H_3$), 7.06-7.19 (m, 3 H, $m-C_6H_5$, $p-C_6H_5$), 7.78 (dm, $^3J = 6.7$ Hz, 2 H, $o-C_6H_5$), 11.03 (s, 1 H, CHO). – ¹³C NMR (75 MHz, CDCl₃): δ = $72.7 \ (C_5H_5), \ 73.1, \ 75.1, \ 78.2 \ (R_2C_5H_3), \ 81.1, \ 82.1 \ (\emph{i-}R_2C_5H_3),$ 129.0, 129.1 (o/m-C₆H₅), 132.9 (p-C₆H₅), 140.0 (i-C₆H₅), 196.0 (CHO), 200.0 (FcCOPh). – EI-MS: $m/z = 318.0 (100) [M^+], 290.0$ (74) $[M^+ - CO]$, 252.9 (16) $[M^+ - C_5H_5]$, 196.9 (24) $[M^+]$ C₅H₅Fe], 184.9 (12) [Fc⁺], 152.0 (26), 141.0 (37), 139.0 (15), 132.9 (15), 120.9 (20) [CpFe⁺], 115.0 (15), 105.0 (10) [C₆H₅CO⁺], 77.1 (16) $[C_6H_5^+]$, 55.9 (18) $[Fe^+]$. - $C_{18}H_{14}FeO_2$ (318.2): calcd. C 67.95, H 4.44; found C 67.70, H 4.88.

(S_p)-(2-Iodoferrocenyl)(phenyl)methanone (9f): According to GP7, a solution of hydrazone 15g (140 mg) in DME (15 mL) was treated with SnCl₂·2H₂O (78 mg) and H₂O (1.2 mL). The reaction mixture was refluxed for 9 h, adding a further portion of SnCl₂·2H₂O (2.0 equiv.) in the meantime. Work up and flash chromatography (CH₂Cl₂) provided planar chiral ketone 9f. – Yield: 86 mg (78%, red crystals). – R_f = 0.80 (CH₂Cl₂). – ee = 71% (HPLC, Chiralcel OD2, cHex/iPrOH = 95:5, 0.5 mL/min, ent-1: 9.5 min, ent-2: 11.9 min). – [α] $_{25}^{25}$ = +187.7 (CHCl₃, c = 0.47). – M.p. 83 °C. – IR (CHCl₃): \hat{v} = 3097 cm⁻¹, 3060, 3013, 2925, 1721, 1645, 1598, 1577, 1447, 1421, 1372, 1353, 1319, 1254, 1217, 1191, 1177, 1157, 1108, 1066, 1048, 1027, 1003, 986, 860, 848, 829, 797, 756, 726, 698, 672, 506, 485. – ¹H NMR (300 MHz, CDCl₃): δ = 4.23 (s, 5

H, C_5H_5), 4.52 (t, ${}^3J=2.7\,Hz$, 1 H, $R_2C_5H_3$), 4.59 (dd, ${}^3J=2.7\,Hz$, ${}^4J=1.4\,Hz$, 1 H, $R_2C_5H_3$), 4.85 (dd, ${}^3J=2.7\,Hz$, ${}^4J=1.4\,Hz$, 1 H, $R_2C_5H_3$), 7.45 (tm, ${}^3J=7.7\,Hz$, 2 H, $m\text{-}C_6H_5$), 7.55 (tt, ${}^3J=7.4\,Hz$, ${}^4J=1.3\,Hz$, 1 H, $p\text{-}C_6H_5$), 7.85 (dm, ${}^3J=7.1\,Hz$, 2 H, $o\text{-}C_6H_5$). $-{}^{13}\text{C}$ NMR (75 MHz, CDCl₃): $\delta=71.5$, 72.3, 80.1 ($R_2C_5H_3$), 72.7 ($i\text{-}R_2C_5H_3$), 73.2 (C_5H_5), 128.2, 128.7 ($olm\text{-}C_6H_5$), 132.0 ($p\text{-}C_6H_5$), 139.2 ($i\text{-}C_6H_5$), 197.8 (C=O). — EI-MS: m/z=415.9 (100) [M⁺], 287.9 (63) [M⁺ — HI], 259.9 (69) [287.9 — CO], 204.0 (24) [259.9 — Fe], 203.0 (30), 202.0 (27), 182.8 (11) [287.9 — $C_6H_5\text{CO}$], 139.0 (21), 104.9 (11) [$C_6H_5\text{CO}^+$], 77.0 (14) [$C_6H_5^+$]. — HR-MS: $C_{17}H_{13}^{56}\text{FeIO}$: calcd. 415.936046; found 415.936171.

 (S_n) -Cyclohexyl(2-methylferrocenyl)methanone (9g): According to GP6, a solution of hydrazone 18b (98 mg) in DME (10 mL) was treated with a 20% aqueous solution of TiCl₃ (2.5 equiv.) and refluxed for 60 min. Work up and filtration through silica gel (CH₂Cl₂) provided planar chiral ketone 9g. – Yield: 71 mg (99%, red crystals). – $R_f = 0.68$ (CH₂Cl₂). – $ee \ge 96\%$ (¹H NMR, Pirkle alcohol, CDCl₃). – $[\alpha]_D^{25} = -343.5$ (CHCl₃, c = 0.52). – IR (KBr): $\tilde{v} = 3095 \text{ cm}^{-1}$, 2924, 2853, 2669, 2236, 1660, 1450, 1421, 1378, 1360, 1346, 1308, 1293, 1261, 1233, 1202, 1175, 1158, 1104, 1067, 1038, 1002, 975, 944, 921, 981, 849, 812, 770, 736, 670, 596, 512, 491, 468. - ¹H NMR (300 MHz, C₆D₆): $\delta = 1.08-2.00$ [m, 10 H, (CH₂)₅], 2.76 (m, 1 H, O=CCH), 2.41 (s, 3 H, CH₃), 3.92 (s, 5 H, C_5H_5), 3.98 (t, ${}^3J = 2.7 \text{ Hz}$, 1 H, $C_5H_3R_2$), 4.10 (dd, ${}^3J = 2.0 \text{ Hz}$, $^{4}J = 1.8 \text{ Hz}, 1 \text{ H}, C_{5}H_{3}R_{2}, 4.32 \text{ (dd, }^{3}J = 2.7 \text{ Hz}, ^{4}J = 1.4 \text{ Hz}, 1$ H, $C_5H_3R_2$). – ¹³C NMR (75 MHz, C_6D_6): $\delta = 15.5$ (CH₃), 26.1, 26.3, 26.5, 29.1, 31.3 (CH₂), 48.4 (O=CCH), 69.2, 70.4, 74.6 $(C_5H_3R_2)$, 70.3 (C_5H_5) , 87.4, 89.4 $(i-C_5H_3R_2)$, 207.7 (C=O). – EI-MS: $m/z = 310.0 (100) [M^+], 226.9 (37) [M^+ - C_6H_{11}], 198.9 (43)$ [226.9 - CO], 143.0 (16) [198.9 - Fe], 121.0 (20) [CpFe⁺], 56.0 $(Fe^+)^{[11]}$, 55.1 (15). - $C_{18}H_{22}FeO$ (310.2): calcd. C 69.69, H 7.15; found C 69.51, H 7.36.

 (R_n) -(5-Butyl-2-thienyl)(2-methylferrocenyl)methanone (9h): Hydrazone 20 (87 mg) dissolved in THF/H₂O (4:0.5 mL) was treated with Cr(OAc)₂ (1.0 g). The reaction mixture was refluxed for 4 h and cooled down to room temp. After filtration from undissolved Cr salts, the filtrate was diluted with diethyl ether, washed twice with saturated aqueous NaCl and dried over MgSO₄. Compound 9h was obtained by filtration through silica gel (hexane/diethyl ether = 4:1). - Yield: 46 mg (67%, red oil). - R_f = 0.54 (hexane/ diethyl ether = 4:1). $- [\alpha]_D^{25} = +384.0$ (CHCl₃, c = 1.75). - IR $(CHCl_3)$: $\tilde{v} = 3093 \text{ cm}^{-1}$, 2956, 2928, 2860, 1665, 1612, 1530, 1456, 1420, 1378, 1345, 1281, 1228, 1159, 1106, 1042, 1002, 874, 816, 756, 666, 611, 502, 489. - ¹H NMR (300 MHz, C₆D₆): $\delta = 0.78$ (t, $^{3}J =$ 7.4 Hz, 3 H, CH_2CH_3), 1.16 (sext, $^3J = 7.4$ Hz, 2 H, CH_2CH_3), 1.45 (pent, ${}^{3}J = 7.6 \text{ Hz}$, 2 H, $CH_2CH_2CH_3$), 2.41 (s, 3 H, $CpCH_3$), 2.49 $(t, {}^{3}J = 7.7 \text{ Hz}, 2 \text{ H}, C_{4}H_{2}SCH_{2}), 3.95 \text{ (s, 5 H, C}_{5}H_{5}), 4.02 \text{ (t, } {}^{3}J =$ 2.7 Hz, 1 H, $C_5H_3R_2$), 4.13 (dd, $^3J = 2.4$ Hz, $^4J = 1.4$ Hz, 1 H, $C_5H_3R_2$), 4.66 (dd, $^3J = 2.7 \text{ Hz}$, $^4J = 1.3 \text{ Hz}$, 1 H, $C_5H_3R_2$), 6.54 (d, ${}^{3}J = 3.7 \text{ Hz}$, 1 H, C₄H₂S), 7.70 (d, ${}^{3}J = 3.7$, 1 H, C₄H₂S). – ¹³C NMR (75 MHz, C_6D_6): $\delta = 13.8$, 15.1 (CH₃), 22.4 (CH₂CH₃), $30.3 (CH_2CH_2CH_3), 33.7 (C_4H_2SCH_2), 68.9, 71.7, 73.7 (C_5H_3R_2),$ 71.1 (C_5H_5), 78.8, 87.9 ($i-C_5H_3R_2$), 125.1, 132.3 (C_4H_2S), 143.9, 153.5 (i-C₄H₂S), 189.7 (C=O). – EI-MS: m/z = 366.1 (100) [M⁺], 199.0 (23) $[C_{10}H_8FeCH_3^+]$, 121.0 (12) $[CpFe^+]$. - $C_{20}H_{22}FeOS$ (366.3): calcd. C 65.58, H 6.05; found C 65.94, H 6.54.

 (S_p) -(2-Benzylferrocenyl)(boranato)(diphenyl)phosphane (24): A mixture of LiAlH₄ (2.3 equiv.) and AlCl₃ (2.3 equiv.) in Et₂O (1 mL) was treated with a solution of ketone 9c (74 mg) in Et₂O (1 mL) at 0 °C. The mixture was stirred for 15 h at room temp. After cooling to 0 °C, the suspension was treated with saturated aqueous NH₄Cl and washed twice with saturated aqueous NaCl.

After drying over MgSO₄, 24 was purified by filtration through silica gel (hexane/diethyl ether = 2:1). - Yield: 66 mg (92%, yellow crystals). $-R_f = 0.50$ (hexane/diethyl ether = 4:1). $- \left[\alpha\right]_D^{25} = -1.9$ $(CHCl_3, c = 0.42)$. – M.p. 143 °C. – IR (KBr): $\tilde{v} = 3100 \text{ cm}^{-1}$, 3085, 3074, 3057, 3026, 3004, 2949, 2924, 2908, 2851, 2408, 2389, 2342, 2255, 1958, 1889, 1815, 1775, 1708, 1686, 1655, 1602, 1586, 1573, 1544, 1493, 1481, 1454, 1435, 1410, 1385, 1341, 1325, 1308, 1289, 1276, 1239, 1177, 1158, 1130, 1105, 1062, 1039, 1030, 1000, 921, 841, 823, 740, 712, 651, 622, 600, 568, 530, 500. – ¹H NMR $(300 \text{ MHz}, C_6D_6)$: $\delta = \text{ca. } 2.40 \text{ (broad, } {}^1J_{BH} = 120 \text{ Hz}, 3 \text{ H, BH}_3),$ 3.70 (dd, ${}^{3}J = 3.7 \text{ Hz}$, ${}^{4}J = 2.4 \text{ Hz}$, 1 H, C₅H₃R₂), 3.85 (d, ${}^{2}J =$ 15.5 Hz, 1 H, CH₂), 3.96 (t, ${}^{3}J = 2.7$ Hz, 1 H, C₅H₃R₂), 4.14 (dd, $^{3}J = 3.7 \text{ Hz}, ^{4}J = 1.4 \text{ Hz}, 1 \text{ H}, o\text{-}C_{5}H_{3}R_{2}), 4.16 \text{ (s, 5 H, C}_{5}H_{5}),$ $4.20 \text{ (d, }^2J = 15.5 \text{ Hz, } 1 \text{ H, CH}_2), 6.83 - 7.11 \text{ (m, } 11 \text{ H, C}_6\text{H}_5), 7.49$ (ddd, ${}^{3}J_{HP} = 10.0 \text{ Hz}$, ${}^{3}J = 8.4 \text{ Hz}$, ${}^{4}J = 1.7 \text{ Hz}$, 2 H, P-o-C₆H₅), 7.78 (ddd, ${}^{3}J_{HP} = 9.4 \text{ Hz}$, ${}^{3}J = 7.7 \text{ Hz}$, ${}^{4}J = 1.7 \text{ Hz}$, 2 H, P-o- C_6H_5). - ¹³C NMR (75 MHz, C_6D_6): $\delta = 34.8$ (CH₂), 69.2 (d, ${}^{1}J_{\text{CP}} = 62.2 \text{ Hz}, i\text{-}C_{5}H_{3}R_{2}), 70.0 \text{ (d, } J_{\text{CP}} = 6.1 \text{ Hz)}, 73.4 \text{ (d, } J_{\text{CP}} =$ 4.9 Hz), 73.8 (d, $J_{CP} = 7.3$ Hz, $C_5H_3R_2$), 70.9 (C_5H_5), 93.6 (d, $^{2}J_{CP} = 24.6 \text{ Hz}, i-C_{5}H_{3}R_{2}), 126.1 \text{ (CH}_{2}-p-C_{6}H_{5}), 128.4, 129.3$ $(CH_2-o/m-C_6H_5)$, 130.6 (d, ${}^4J_{CP} = 2.4 \text{ Hz}$), 130.9 (d, ${}^4J_{CP} = 2.5 \text{ Hz}$, P-p-C₆H₅), 131.65 (d, ${}^{1}J_{CP} = 59.8 \text{ Hz}$), 131.67 (d, ${}^{1}J_{CP} = 56.2 \text{ Hz}$, $P-i-C_6H_5$), 133.1 (d, ${}^2J_{CP} = 9.1 \text{ Hz}$), 133.8 (d, ${}^2J_{CP} = 9.7 \text{ Hz}$, P-o- C_6H_5), 140.9 (CH₂-*i*- C_6H_5). – EI-MS: m/z = 474.0 (1) [M⁺], 459.9 $(100) [M^+ - BH_3], 274.9 (42) [459.9 - PPh_2], 183.0 (20), 121.0$ (12) [CpFe $^+$]. - C₂₉H₂₈BFeP (474.2): calcd. C 73.46, H 5.95; found C 73.69, H 6.24.

Malonate (R)-17:^[17] A mixture of (π-allyl)palladium chloride dimer (3.7 mg, 0.01 mmol) and ligand **15c** (23.5 mg, 0.04 mmol) in CH₂Cl₂ (1.5 mL) was stirred at room temp. for 1 h. A solution of 1,3-diphenyl-2-propenyl acetate **(16)** (1.0 mmol, 252 mg) in CH₂Cl₂ (0.5 mL) was added, followed by dimethylmalonate (3.0 mmol, 0.34 mL), *N,O*-bis(trimethylsilyl)acetamide (BSA, 3.0 mmol, 0.74 mL) and KOAc (0.01 mmol, 1.0 mg), sequentially. After 24 h, the reaction mixture was diluted with Et₂O (20 mL), quenched with saturated aqueous NH₄Cl (20 mL) and washed with saturated brine (20 mL). The organic layer was dried over MgSO₄. After evaporation of the solvent in vacuo, the crude product was purified by column chromatography (hexane/diethyl ether = 4:1). – Yield: 272 mg (84%, colorless oil). – ee = 93% [¹H NMR, Eu(tfc)₃, CDCl₃]. – [α]²⁵ = +18.9 (EtOH, c = 1.05).

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (Leibniz-Preis), the Fonds der Chemischen Industrie and by the Forschungsverbund Katalyse Nordrhein-Westfalen. We thank Degussa AG, BASF AG, the former Hoechst AG, Bayer AG and Wacker Chemie for the donation of chemicals.

- ^[1] Reviews: ^[1a]A. Togni, T. Hayashi, Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science, VCH, Weinheim, 1995. ^[1b]C. J. Richards, A. J. Locke, Tetrahedron: Asymmetry 1998, 9, 2377–2407.
- [2] D. Marquarding, H. Klusacek, G. Gokel, P. Hoffmann, I. Ugi, J. Am. Chem. Soc. 1970, 92, 5389-5393.
- [3] [3a]O. Riant, O. Samuel, H. B. Kagan, J. Am. Chem. Soc. 1993,
 115, 5835-5836. [3b]O. Riant, O. Samuel, T. Flessner, S. Taudien, H. B. Kagan, J. Org. Chem. 1997, 62, 6733-6745.
- [4] C. Ganter, T. Wagner, Chem. Ber. 1995, 128, 1157-1161.
- [5] [5a]T. Sammakia, H. A. Latham, D. R. Schaad, *J. Org. Chem.* 1995, 60, 10-11. [5b]C. J. Richards, T. Damalidis, D. E. Hibbs, M. B. Hursthouse, *Synlett* 1995, 74-76. [5c]Y. Nishibayashi, S. Uemura, *Synlett* 1995, 79-81.
- [6] [6a]F. Rebière, O. Riant, L. Ricard, H. B. Kagan, Angew. Chem.
 1993, 105, 644-646; Angew. Chem. Int. Ed. 1993, 32, 568-570.
 [6b]O. Riant, G. Argouarch, D. Guillaneux, O. Samuel, H. B. Kagan, J. Org. Chem. 1998, 63, 3511-3514.
- [7] D. Enders, in Asymmetric Synthesis, Vol. 3 (Ed.: J. D. Morrison), Academic Press, Orlando 1984, pp. 275–339.
- [8] D. Enders, R. Peters, R. Lochtman, J. Runsink, Synlett 1997, 1462–1464.
- [9] R. B. Woodward, M. Rosenblum, M. C. Whiting, J. Am. Chem. Soc. 1952, 74, 3458–3459.
- [10] B. Bildstein, P. Denifl, Synthesis 1994, 158-160.
- [11] Reviews: [11a] B. M. Trost, D. L. van Vranken, Chem. Rev. 1996, 96, 395-422. [11b] T. Hayashi, in Catalytic Asymmetric Synthesis (Ed.: I. Ojima), VCH, Weinheim, 1993, pp. 325-365.
- G. H. Timms, E. Wildsmith, *Tetrahedron Lett.* **1971**, 195–198.
 J. E. McMurry, M. Silvestri, *J. Org. Chem.* **1975**, 40, 1502–1504.
- [14] B. P. Chandrasekhar, S. V. Senthankar, S. G. Telung, *Chem.*
- Ind. 1975, 18, 87-88.
 [15] D. Enders, L. Wortmann, R. Peters, Acc. Chem. Res. 2000, 33, 157-169.
- [16] [16a] H. Falk, H. Lehner, J. Paul, U. Wagner, *J. Organomet. Chem.* **1971**, 28, 115–124. [16b] D. W. Slocum, S. P. Tucker, T. R. Engelmann, *Tetrahedron Lett.* **1970**, 621–624.
- [17] J. V. Allen, S. J. Coote, G. J. Dawson, C. G. Frost, C. J. Martin, J. M. J. Williams, J. Chem. Soc., Perkin 1 1994, 2065.
 Received February 7, 2000 [O00051]